The reaction threshold of JOB-9003 explosive under low amplitude loading
-
摘要: 发展了一种研究炸药反应阈值的实验方法和分析技术:采用火药炮发射飞片的加载技术产生低冲击加载压力,应用电磁粒子速度计测量JOB-9003炸药后界面与PMMA之间界面粒子速度。通过分析界面粒子速度曲线,得到了低冲击加载下炸药与PMMA之间的界面粒子速度历史,获得了入射压力与未反应和反应后的界面粒子速度之间的up-p关系。JOB-9003炸药在低冲击加载下的化学反应阈值和点火阈值分别为1.42、2.62 GPa。Abstract: A novel experimental technique to study the reaction threshold of explosives is developed. The flyer is accelerated to an expected velocity to gain a low amplitude loading by the gas gun. The interface particle velocity between JOB-9003 and PMMA under different stresses is measured with electromagnetic particle velocity gauges. The interface velocities of unreacting and reacting explosive are achieved based on the curve of the explosive interface particle velocity. The relationship ofup-p is achieved according to interface velocity of unreacting and reacting explosives. The chemical reaction threshold and the ignition threshold of JOB-9003 are 1.65 GPa and 2.62 GPa under the low amplitude loading.
-
表 1 材料参数[12]
Table 1. material parameters
材料 c/(mm·μs-1) λ ρ/(g·cm-3) JOB-9003 2.49 2.09 1.84 PMMA 2.60 1.52 1.19 Al 5.25 1.39 2.78 不锈钢(0Cr18Ni9) 4.69 1.33 7.80 表 2 界面粒子速度随加载压力的变化情况
Table 2. Interface particle velocity of explosives vs. input pressure
实验 飞片 v/(m·s-1) p/GPa upn/(m·s-1) upr/(m·s-1) upc/(m·s-1) 备注 1 Al 320 1.28 152 152 153 未反应。取upr=upn。 2 Al 365 1.42 185 185 182 未反应。取upr=upn。 3 Al 450 1.75 235 305 235 慢反应。 4 Al 476 2.02 287 647 244 慢反应。 5 Al 524 2.26 319 788 273 慢反应。 6 Al 595 2.62 418 958 305 快速反应。 7 Al 624 2.78 455 1417 316 快速反应。 8 Steel 565 3.08 515 2280 335 爆炸。upn根据未反应实验点拟合得到。 -
[1] Tarver C M, Chidester S K. On the violence of high explosive reactions[R]. UCRL-CONF-202375, 2004. [2] Baker P J. Impact-initiated detonative and nondetonative reactions in confined tritonal, composition H-6, and PBXN-109[C]//Lee E L. 11th Symposium(International)on Detonation, Snowmass. Colorado, 1996: 254-265. [3] Chidester S K, Green L G, Lee C G. A frictional work predictive method for the ignition of solid high explosives from low pressure impacts//Short J M, Tasker D J. 10th Symposium(International)on Detonation. Boston, Massachusetts, 1993: 785-792. [4] Chidester S K, Tarver C M, Graza R. Low amplitude impact testing and analysis of pristine and aged solid high explosives[C]//Lee E L. 11th Symposium(International)on Detonation. Snowmass, Corolado, 1998: 93-100. [5] Liddiard T P, Forbes J W. Physical evidence of different chemical reactions in explosives as a function of stress[C]//Lee E L, Short J M. 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 1235-1242. [6] Lemar E R, Liddiard T P, Forbes J W. The analysis of modified gap test data for several insensitive explosives[C]//Short J M, Tasker D J. 10th Symposium(International)on Detonation. Boston, Massachusetts, 1993: 731-737. [7] Tasker D G. Shock initiation and subsequent growth of reaction in explosives and propellants: The low amplitude shock initiation, LASI[C]//Short J M. 7th Symposium(International)on Detonation. Annapolis, Maryland, 1981: 285-298. [8] Kroh M, Thoma K, Arnold W, et al. Shock sensitivity and performance of several high explosives[C]//Short J M. 8th Symposium(International)on Detonation. Albuquerque, New Mexico, 1985: 1131-1138. [9] 李金河, 文尚刚, 谭多望.低冲击作用下JO-9159炸药的反应阈值[J].爆炸与冲击, 31(2), 2011: 148-152. doi: 10.11883/1001-1455(2011)02-0148-05Li Jin-he, Wen Shang-gang, Tan Duo-wang. The experimental study on the reaction threshold of explosive under low amplitude shock[J]. Explosion and Shock Waves, 2011, 31(2): 148-152. doi: 10.11883/1001-1455(2011)02-0148-05 [10] Gustavsen R L, Sheffield S A, Alcon R R, et al. Shock initiation of new and aged PBX-9501 Measured with embedded electromagnetic particle velocity gauges[R]. LA-13634-MS, 1999. [11] 李金河, 赵继波, 谭多望.用组合式电磁粒子速度计研究JO-9159炸药的爆轰增长过程[C]//第八届全国爆轰学术会议论文集.腾冲, 2010: 58-63. [12] Marsh S P. LASL shock Hugoniot data[M]. Berkeley: University of California Press, 1980. [13] Wackerle J, Stacy H L, Seitz W L. Velocimetry studies on the prompt initiation of PBX 9502[C]//Short J M, Tasker D J. 10th Symposium(International)on Detonation. Boston, Massachusetts, 1993: 468-475. [14] Forest C A, Wackerle J, Dick J J, et al. Lagrangian analysis of MIV gauge experiments on PBX 9502 using the mass-displacement moment function[C]//Lee E L, Short J M. 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 683-692. [15] Gustavsen R L, Sheffield S A, Alcon R R. Measurements of shock initiation in the tri-amino-tri-nirtro-benzene based explosive PBX 9502: Wave forms from embedded gauges and comparison of four different material lots[J]. Journal of Applied Physics, 2006, 99(11): 114907. doi: 10.1063/1.2195191 期刊类型引用(10)
1. 陆曼君,解利军,祁佳晨,王攀,姚成宝. 面向爆炸压力场的体绘制自动传输函数设计. 计算机应用研究. 2024(02): 602-608 . 百度学术
2. 王振宁,尹建平,伊建亚,李旭东. 柱形装药近地动爆冲击波周向传播规律研究. 爆炸与冲击. 2023(06): 90-107 . 本站查看
3. 高永红,王子聪,张伟,辛凯,王巍,段亚鹏. 强冲击荷载作用下钢结构建筑毁伤后果研究. 结构工程师. 2023(03): 141-149 . 百度学术
4. 崔元博,孔德仁,张学辉,张逸飞. 典型炸药爆炸过程中电磁辐射特性分析. 国防科技大学学报. 2022(06): 70-80 . 百度学术
5. 姚成宝,付梅艳,韩峰,闫凯,雷雨. 基于多介质Riemann问题的流体-固体耦合数值方法及其在爆炸与冲击问题中的应用. 兵工学报. 2021(02): 340-355 . 百度学术
6. 张琳,张泽,姚李刚,杨剑波,秦将,潘登,王军龙. 防爆舱设计及抗爆炸冲击波超压试验研究. 科学技术与工程. 2021(29): 12383-12389 . 百度学术
7. 任会兰,储著鑫,栗建桥,马天宝. B炸药爆炸过程中电磁辐射研究. 力学学报. 2020(04): 1199-1210 . 百度学术
8. 杨科之,刘盛. 空气冲击波传播和衰减研究进展. 防护工程. 2020(03): 1-10 . 百度学术
9. 曹涛,孙浩,周游,罗赓,孙吉伟. 近地爆炸冲击波传播特性数值模拟与应用. 兵器装备工程学报. 2020(12): 187-191 . 百度学术
10. 王良全,商飞,孔德仁. 静动爆冲击波数值仿真分析. 兵器装备工程学报. 2020(12): 208-213 . 百度学术
其他类型引用(11)
-