Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration
-
摘要: 为探讨高速弹体侵彻下蓄液结构的防护方法,采用瞬态非线性有限元,研究了高速杆式弹体侵彻下蓄液结构承受的冲击载荷特性,分析了冲击载荷的作用过程、前后板承受的载荷强度及其弹体初速度和水域尺度的影响。结果表明:弹体在蓄液结构中的初始开坑作用,将形成入射冲击波,其压力峰值极高,但作用时间短,并将在液体内产生多次反射;弹体在液体中的侵彻,将产生空化,并形成峰值小、作用时间长的空化压力载荷;后板对液体流的阻碍作用将形成出口局部高压;入射冲击波和出口局部高压的强度随着弹体初速度的增加而增大,随着水域长度的增加而不断减小。根据所受冲击载荷特性的不同,将前、后板分别划分为3个不同的区域,并建立了每个分区的简化计算模型。Abstract: To find effective protection for fluid-filled structures subjected to high-speed projectile penetration, we studied the characteristics of a structure bearing impact loads when undergoing high velocity rod projectile penetration using dynamic nonlinear finite element, and analyzed the process of the impact load, the load strength, the projectile initial velocity, and water scale, and their effects on the front and rear plates that bear the impact. Our results show that the initial penetrating effect (pit-opening) on the liquid-filled structure forms incident shock waves, which will have a high peak pressure but a short duration, and produce multiple reflections in the liquid. Along with the penetration process in the liquid, the cavitation will occur and result in a cavitation pressure load which will reach a small peak value with a long duration. Local high pressure load will be formed due to the rear plate hindering the liquid flow, and incident shock wave and local high pressure increase with the increase of the initial projectile velocity but decrease with the increase of the length of the waters. According to different characteristics of shock load borne by different parts of the structure, the front and rear plates are divided into three different areas, and a simplified model was established for each.
-
-
[1] Lecysyn N, Dandrieux A, Heymes F, et al. Ballistic impact on an industrial tank: Study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2/3):587-594. http://cn.bing.com/academic/profile?id=cbce25e6101d6d2274427107153dea89&encoded=0&v=paper_preview&mkt=zh-cn [2] Disimile P J, Toy N, Swanson L A. A large-scale shadowgraph technique applied to hydrodynamic ram[J]. Journal of Flow Visualization & Image Processing, 2009, 16(4):1-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e4c766726c6f5629d9732baabe2cf211 [3] McMillen J H. Shock wave pressures in water produced by impact of smallspheres[J]. Physical Review, 1945, 68(9/10):198-209. https://www.researchgate.net/publication/243691996_Shock_Wave_Pressures_in_Water_Produced_by_Impact_of_Small_Spheres [4] McMillen J H, Harvey E N. A spark shadowgraphic study of body waves in water[J]. Journal of Applied Physics, 1946, 17(7):541-555. doi: 10.1063/1.1707751 [5] Disimile P J, Davis J, Toy N, et al. Mitigation of shock waves within a liquidfilled tank[J]. International Journal of Impact Engineering, 2011, 38(2):61-72. http://cn.bing.com/academic/profile?id=1ab5bf55e1ad5f29afacb898fefa4d91&encoded=0&v=paper_preview&mkt=zh-cn [6] Townsend D, Park N, Devall P M. Failure of fluid filled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29:723-733. doi: 10.1016/j.ijimpeng.2003.10.019 [7] Borg J P, Cogar J R, Tredways S, et al. Damage resulting from high speed projectile liquid filled metal tanks[C]//Wassex Institute of Technologies Press. 2001: 889-902. [8] Varas D, Zaera R, Lopez-Puente J. Numerical modeling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36(3):363-374. doi: 10.1016/j.ijimpeng.2008.07.020 [9] Lecysyna N, Bony-Dandrieux A, Aprin L. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1):635-643. http://cn.bing.com/academic/profile?id=210f94ef627d0d1fa1b4ca020b886c7a&encoded=0&v=paper_preview&mkt=zh-cn [10] Lecysyn N, Dandrieux A, Heymes F, et al. Preliminary study of ballistic impact on an industrial tank: Projectile velocity decay[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(6):627-634. doi: 10.1016/j.jlp.2008.06.006 期刊类型引用(18)
1. 虞爱平,李秀鑫,程梓宸,苗天娇,刘涛,虞小平. 基于声发射和数字图像相关技术的不同粗骨料粒径混凝土损伤特性. 河南科技大学学报(自然科学版). 2024(05): 57-67+78+118-119 . 百度学术
2. 范海峥. 高应力状态下大理岩受异源扰动声发射响应研究. 佳木斯大学学报(自然科学版). 2022(01): 16-19 . 百度学术
3. 文晓泽,冯国瑞,郭军,王朋飞,钱瑞鹏,朱林俊,郝晨良,樊一江. 中低应变率扰动荷载作用下砂岩动态拉伸力学响应特征研究. 岩石力学与工程学报. 2022(S1): 2812-2822 . 百度学术
4. 杨英明,陶春梅,郭奕宏,张科学. 动静组合加载下煤体损伤及力学特性研究. 采矿与安全工程学报. 2019(01): 198-206 . 百度学术
5. 张桂菊,谭青,劳同炳. 不同动静载荷组合作用下盘形滚刀破岩机制. 中南大学学报(自然科学版). 2019(03): 540-549 . 百度学术
6. 严鹏,陈拓,卢文波,谢良涛. 岩爆动力学机理及其控制研究进展. 武汉大学学报(工学版). 2018(01): 1-14+26 . 百度学术
7. 王宗炼,任会兰,宁建国. 基于小波变换的混凝土压缩损伤模式识别. 兵工学报. 2017(09): 1745-1753 . 百度学术
8. 李晓锋,李海波,刘凯,张乾兵,邹飞,黄理兴,ZHAO Jian. 冲击荷载作用下岩石动态力学特性及破裂特征研究. 岩石力学与工程学报. 2017(10): 2393-2405 . 百度学术
9. 刘希灵,潘梦成,李夕兵,王金鹏. 动静加载条件下花岗岩声发射b值特征的研究. 岩石力学与工程学报. 2017(S1): 3148-3155 . 百度学术
10. 罗小平,黄友亮. 不同岩性Kaiser效应实验研究. 中州煤炭. 2016(04): 122-124+128 . 百度学术
11. 章道生,顾培英,邓昌,王建. 砂浆板冲击荷载下声发射定位试验研究. 科学技术与工程. 2015(09): 56-62 . 百度学术
12. 张宇,赵光明,杨敏. 单轴压缩条件下煤矿岩石的声发射特征研究. 煤炭技术. 2014(05): 76-78 . 百度学术
13. 周子龙,李国楠,宁树理,杜坤. 侧向扰动下高应力岩石的声发射特性与破坏机制. 岩石力学与工程学报. 2014(08): 1720-1728 . 百度学术
14. 刘少虹,李凤明,蓝航,潘俊锋,杜涛涛. 动静加载下煤的破坏特性及机制的试验研究. 岩石力学与工程学报. 2013(S2): 3749-3759 . 百度学术
15. 廖志毅,梁正召,唐春安,杨岳峰. 动静组合作用下刀具破岩机制数值分析. 岩土力学. 2013(09): 2682-2689+2698 . 百度学术
16. 赵伏军,王宏宇,彭云,王国举. 动静组合载荷破岩声发射能量与破岩效果试验研究. 岩石力学与工程学报. 2012(07): 1363-1368 . 百度学术
17. 万国香,王其胜,李夕兵. 岩体中电磁辐射信号的产生与传播. 矿业研究与开发. 2011(01): 23-25+52 . 百度学术
18. 王小琼,葛洪魁,宋丽莉,和泰名,辛维. 两类岩石声发射事件与Kaiser效应点识别方法的试验研究. 岩石力学与工程学报. 2011(03): 580-588 . 百度学术
其他类型引用(46)
-