Shockwave characteristics of thermobaric explosive in free-field explosion
-
摘要: 为了研究温压炸药在敞开空间爆炸中冲击波的规律,选取典型温压炸药制成不同量级的裸药柱进行野外近地空爆实验,同时用TNT进行对比实验,获取温压炸药与TNT的冲击波参数并拟合得到相似律公式。结果表明,温压炸药的冲击波超压峰值在中远场略高于TNT;在相同对比距离处,温压炸药的比冲量明显高于TNT,在对比距离小于2 m/kg1/3的近场,温压炸药的比冲量达到TNT的2倍。引入超压-比冲量曲线描述冲击波特征,表明当超压峰值相同时,温压炸药比冲量更大, 超压峰值在20~50 kPa的中度以下毁伤范围时,温压炸药的比冲量比TNT高40%~60%,可产生更严重的毁伤效应。冲量是爆炸冲击波的重要毁伤元素,应建立与冲量有关的方法评价温压炸药的威力。Abstract: The energy release process and damage characteristics of thermobaric explosive (TBE), a non-ideal explosive, differ from those of a normal explosive. In the present work, free-field explosion experiments were done to study the shock wave characteristics of TBE. The typical TBE grains and TNT grains with different magnitude order were tested and the shock wave parameters of TBE and TNT were obtained and fitted following the explosion similarity principle. Then a comparative research of TBE and TNT was done to show the characteristics of TBE. The results show that the peak pressure of TBE isn't obviously advantageous compared with that of TNT because it is only slightly higher than TNT at middle and far field. The positive phase time and impulse are related not only with the shock wave intensity and propagation distance but also with the explosive quality, so the specific impulse and specific positive phase time were studied. The correlation of the specific positive phase time between TBE and TNT is not definite. The specific impulse of TBE is higher than that of TNT at the same contrastive distance. When it is less than 2 m/kg1/3, the specific impulse of TBE is 2 times that that of TNT. The curves of the peak pressure and the specific impulse was introduced to describe the characteristics of the shock wave, showing that the specific impulse of TBE is larger than that of TNT under the same peak pressures. When the peak pressure is between 20 kPa to 50 kPa, the damage degree is below middle level but when the specific impulse of TBE is 40%-60% higher than that of TNT serious damage is generated. As an important damage factor in the free field explosion, the impulse should be taken into account when evaluating the power of TBE.
-
Key words:
- mechanics of explosion /
- shockwave /
- similarity principle /
- thermobaric explosive
-
[1] Wildegger-Gaissmaier A E. Aspects of thermobaric weaponry[J]. ADF Health, 2003, 4(4):3-6. [2] 李芝绒, 王胜强, 殷俊兰.不同气体环境中温压炸药爆炸特性的试验研究[J].火炸药学报, 2013, 36(3):59-61. doi: 10.3969/j.issn.1007-7812.2013.03.014Li Zhirong, Wang Shengqiang, Yin Junlan. Experiment study of blast performance of thermobaric-explosive under different gas environment[J]. Chinese Journal of Explosives & Propellants, 2013, 36(3):59-61. doi: 10.3969/j.issn.1007-7812.2013.03.014 [3] Jackson S I, Kiyanda C B, Short M. Experimental observations of detonation in ammonium-nitrate-fuel-oil (ANFO) surrounded by a high-sound-speed, shockless, aluminum confiner[J]. Proceedings of the Combustion Institute, 2011, 33(2):2219-2226. doi: 10.1016/j.proci.2010.07.084 [4] Ruggirello K P, DesJardin P E, Baer M R. A reaction progress variable modeling approach for non-ideal multiphase explosives[J]. International Journal of Multiphase Flow, 2012, 42:128-151. doi: 10.1016/j.ijmultiphaseflow.2012.02.005 [5] 郑波, 陈力, 丁雁生, 等.高能、含铝和温压炸药爆炸抛撒实验研究[J].弹箭与制导, 2008, 28(3):118-120. doi: 10.3969/j.issn.1673-9728.2008.03.036Zheng Bo, Chen Li, Ding Yansheng, et al. Experimental study on explosion dispersal of thermobaric explosive[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3):118-120. doi: 10.3969/j.issn.1673-9728.2008.03.036 [6] Peuker J M, Krier H, Glumac N. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives[J]. Proceedings of the Combustion Institute, 2013, 34(1):2205-2212. http://cn.bing.com/academic/profile?id=ae941cf0182f126a5007ce32567a219f&encoded=0&v=paper_preview&mkt=zh-cn [7] Hahma A, Palovuori K, Romu H. Experimental studies on metal fueled thermobaric explosives[C]//35th International Annual Conference of ICT. Karlsrune: ICT, 2006. [8] 李秀丽, 惠君明, 王伯良.云爆剂爆炸/冲击波参数研究[J].含能材料, 2008, 16(4):410-414. doi: 10.3969/j.issn.1006-9941.2008.04.012Li Xiuli, Hui Junming, Wang Boliang. Blast/shock wave parameters of single-event FAE[J]. Chinese Journal of Energetic Materials, 2008, 16(4):410-414. doi: 10.3969/j.issn.1006-9941.2008.04.012 [9] 黄菊, 王伯良, 仲倩, 等.温压炸药能量输出结构的初步研究[J].爆炸与冲击, 2012, 32(2):164-168. doi: 10.3969/j.issn.1001-1455.2012.02.008Huang Ju, Wang Boliang, Zhong Qian, et al. A preliminary investigation on energy output structure of a thermobaric explosive[J]. Explosive and Shock Waves, 2012, 32(2):164-168. doi: 10.3969/j.issn.1001-1455.2012.02.008 [10] 李世民, 李晓军, 郭彦朋.温压炸药自由场爆炸空气冲击波的数值模拟研究[J].爆破, 2011, 28(3):8-12. http://d.old.wanfangdata.com.cn/Periodical/bp201103003Li Shimin, Li Xiaojun, Guo Yanpeng. Numerical simulation study on airblast of thermobaric explosive explosion in free air[J]. Blasting, 2011, 28(3):8-12. http://d.old.wanfangdata.com.cn/Periodical/bp201103003 [11] 北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用[M].北京:国防工业出版社, 1979:259-264. [12] 王新建.爆破空气冲击波及其预防[J].中国人民公安大学学报, 2003(4):41-43. doi: 10.3969/j.issn.1007-1784.2003.04.012Wang Xinjian. Blasting wave and prevention[J]. Journal of Chinese People's Public Security University, 2003(4):41-43. doi: 10.3969/j.issn.1007-1784.2003.04.012 期刊类型引用(22)
1. 孔庆亮,夏治园,王刚,钱明渊,刘明锋,杨帆,高朋飞. 高耸钢混结构造粒塔的定向爆破拆除设计及分离式共节点模拟研究. 爆破器材. 2024(01): 57-64 . 百度学术
2. 赵盟乔,陈磊,王猛,罗宁,权树恩,刘桐. 复杂环境下爆破拆除130 m多管式套筒烟囱的数值模拟研究. 爆破. 2024(04): 128-135 . 百度学术
3. 费鸿禄,张志强,包士杰,张广贝. 框-筒结构楼房折叠爆破拆除数值模拟研究. 爆破. 2023(03): 134-142 . 百度学术
4. 高文乐,李元振,赵德龙,张泽华. 多截面承重立柱框架结构爆破拆除数值模拟研究. 爆破. 2021(01): 93-99 . 百度学术
5. 高文乐,赵德龙,李元振,张泽华,李坤鹏. 延期时差对多截面承重立柱框架结构拆除爆破效果的影响. 爆破器材. 2021(02): 50-54 . 百度学术
6. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对临近框架桥影响的数值模拟研究. 世界桥梁. 2021(03): 97-102 . 百度学术
7. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对桩基损伤的临近桥梁受力影响研究. 交通科技. 2021(04): 35-39 . 百度学术
8. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对临近框架桥拆除影响的数值模拟分析. 广东公路交通. 2021(04): 134-139 . 百度学术
9. 欧阳天云,马建军,池恩安,钟冬望. 剪力墙结构高层住宅楼爆破拆除数值模拟研究. 爆破. 2018(01): 104-108+129 . 百度学术
10. 徐长琦. 高层建筑爆破中爆破与塌落振动对比分析. 广东建材. 2018(09): 64-67 . 百度学术
11. 何理,钟冬望,涂圣武,陈晨,宋琨. 箍筋对深基坑支撑梁爆破拆除的影响机制. 金属矿山. 2018(08): 45-50 . 百度学术
12. 杨小卫,许君风,胡江春. 基于AEM法的爆破拆除倒塌过程的数值模拟. 工程爆破. 2017(02): 11-16 . 百度学术
13. 侯舜,刘磊,刘强,王亚,张胜跃. 建(构)筑物拆除爆破塌落触地的试验研究及数值模拟. 世界科技研究与发展. 2016(04): 749-753 . 百度学术
14. 李清,杨阳,杨仁树,张迪,王茂源. 内爆法建筑倒塌过程和局部构件破坏数值模拟. 爆破. 2015(01): 32-37 . 百度学术
15. 李清,杨阳,杨仁树,张迪,王茂源. 基于MAT96本构模型的钢筋混凝土结构爆破拆除数值模拟. 爆破器材. 2015(01): 41-45 . 百度学术
16. 杨阳,杨仁树,李清,张迪,王茂源. 复杂环境下加固型抗震大楼爆破拆除及数值模拟预测. 工程爆破. 2015(04): 24-28+68 . 百度学术
17. 冯剑平,黄平明,孙海利,王蒂,朱郑. 钢筋混凝土桥墩爆破拆除数值模拟. 广西大学学报(自然科学版). 2014(01): 214-219 . 百度学术
18. 李祥龙,杨阳,栾龙发. 基于整体式模型的钢筋混凝土结构爆破拆除定向倒塌数值模拟. 北京理工大学学报. 2013(12): 1220-1223 . 百度学术
19. 言志信,朱辉辉,于换小,刘灿,贺香. 框架结构建筑物爆破拆除数值分析. 爆破. 2013(03): 104-107+155 . 百度学术
20. 沈晓松,詹振锵,赵明生,池恩安. 数值模拟在朱旺沱宾馆爆破拆除中的应用. 爆破. 2012(01): 27-30 . 百度学术
21. 詹振锵,赵明生,池恩安,王丹丹,和铁柱. 数值模拟在冷却塔爆破拆除中的应用. 爆破. 2012(01): 73-76 . 百度学术
22. 佘勇,池恩安,赵明生. 钢筋混凝土双曲拱桥爆破拆除数值模拟. 金属矿山. 2012(07): 50-52+55 . 百度学术
其他类型引用(13)
-