Shockwave characteristics of thermobaric explosive in free-field explosion
-
摘要: 为了研究温压炸药在敞开空间爆炸中冲击波的规律,选取典型温压炸药制成不同量级的裸药柱进行野外近地空爆实验,同时用TNT进行对比实验,获取温压炸药与TNT的冲击波参数并拟合得到相似律公式。结果表明,温压炸药的冲击波超压峰值在中远场略高于TNT;在相同对比距离处,温压炸药的比冲量明显高于TNT,在对比距离小于2 m/kg1/3的近场,温压炸药的比冲量达到TNT的2倍。引入超压-比冲量曲线描述冲击波特征,表明当超压峰值相同时,温压炸药比冲量更大, 超压峰值在20~50 kPa的中度以下毁伤范围时,温压炸药的比冲量比TNT高40%~60%,可产生更严重的毁伤效应。冲量是爆炸冲击波的重要毁伤元素,应建立与冲量有关的方法评价温压炸药的威力。Abstract: The energy release process and damage characteristics of thermobaric explosive (TBE), a non-ideal explosive, differ from those of a normal explosive. In the present work, free-field explosion experiments were done to study the shock wave characteristics of TBE. The typical TBE grains and TNT grains with different magnitude order were tested and the shock wave parameters of TBE and TNT were obtained and fitted following the explosion similarity principle. Then a comparative research of TBE and TNT was done to show the characteristics of TBE. The results show that the peak pressure of TBE isn't obviously advantageous compared with that of TNT because it is only slightly higher than TNT at middle and far field. The positive phase time and impulse are related not only with the shock wave intensity and propagation distance but also with the explosive quality, so the specific impulse and specific positive phase time were studied. The correlation of the specific positive phase time between TBE and TNT is not definite. The specific impulse of TBE is higher than that of TNT at the same contrastive distance. When it is less than 2 m/kg1/3, the specific impulse of TBE is 2 times that that of TNT. The curves of the peak pressure and the specific impulse was introduced to describe the characteristics of the shock wave, showing that the specific impulse of TBE is larger than that of TNT under the same peak pressures. When the peak pressure is between 20 kPa to 50 kPa, the damage degree is below middle level but when the specific impulse of TBE is 40%-60% higher than that of TNT serious damage is generated. As an important damage factor in the free field explosion, the impulse should be taken into account when evaluating the power of TBE.
-
Key words:
- mechanics of explosion /
- shockwave /
- similarity principle /
- thermobaric explosive
-
[1] Wildegger-Gaissmaier A E. Aspects of thermobaric weaponry[J]. ADF Health, 2003, 4(4):3-6. [2] 李芝绒, 王胜强, 殷俊兰.不同气体环境中温压炸药爆炸特性的试验研究[J].火炸药学报, 2013, 36(3):59-61. doi: 10.3969/j.issn.1007-7812.2013.03.014Li Zhirong, Wang Shengqiang, Yin Junlan. Experiment study of blast performance of thermobaric-explosive under different gas environment[J]. Chinese Journal of Explosives & Propellants, 2013, 36(3):59-61. doi: 10.3969/j.issn.1007-7812.2013.03.014 [3] Jackson S I, Kiyanda C B, Short M. Experimental observations of detonation in ammonium-nitrate-fuel-oil (ANFO) surrounded by a high-sound-speed, shockless, aluminum confiner[J]. Proceedings of the Combustion Institute, 2011, 33(2):2219-2226. doi: 10.1016/j.proci.2010.07.084 [4] Ruggirello K P, DesJardin P E, Baer M R. A reaction progress variable modeling approach for non-ideal multiphase explosives[J]. International Journal of Multiphase Flow, 2012, 42:128-151. doi: 10.1016/j.ijmultiphaseflow.2012.02.005 [5] 郑波, 陈力, 丁雁生, 等.高能、含铝和温压炸药爆炸抛撒实验研究[J].弹箭与制导, 2008, 28(3):118-120. doi: 10.3969/j.issn.1673-9728.2008.03.036Zheng Bo, Chen Li, Ding Yansheng, et al. Experimental study on explosion dispersal of thermobaric explosive[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3):118-120. doi: 10.3969/j.issn.1673-9728.2008.03.036 [6] Peuker J M, Krier H, Glumac N. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives[J]. Proceedings of the Combustion Institute, 2013, 34(1):2205-2212. http://cn.bing.com/academic/profile?id=ae941cf0182f126a5007ce32567a219f&encoded=0&v=paper_preview&mkt=zh-cn [7] Hahma A, Palovuori K, Romu H. Experimental studies on metal fueled thermobaric explosives[C]//35th International Annual Conference of ICT. Karlsrune: ICT, 2006. [8] 李秀丽, 惠君明, 王伯良.云爆剂爆炸/冲击波参数研究[J].含能材料, 2008, 16(4):410-414. doi: 10.3969/j.issn.1006-9941.2008.04.012Li Xiuli, Hui Junming, Wang Boliang. Blast/shock wave parameters of single-event FAE[J]. Chinese Journal of Energetic Materials, 2008, 16(4):410-414. doi: 10.3969/j.issn.1006-9941.2008.04.012 [9] 黄菊, 王伯良, 仲倩, 等.温压炸药能量输出结构的初步研究[J].爆炸与冲击, 2012, 32(2):164-168. doi: 10.3969/j.issn.1001-1455.2012.02.008Huang Ju, Wang Boliang, Zhong Qian, et al. A preliminary investigation on energy output structure of a thermobaric explosive[J]. Explosive and Shock Waves, 2012, 32(2):164-168. doi: 10.3969/j.issn.1001-1455.2012.02.008 [10] 李世民, 李晓军, 郭彦朋.温压炸药自由场爆炸空气冲击波的数值模拟研究[J].爆破, 2011, 28(3):8-12. http://d.old.wanfangdata.com.cn/Periodical/bp201103003Li Shimin, Li Xiaojun, Guo Yanpeng. Numerical simulation study on airblast of thermobaric explosive explosion in free air[J]. Blasting, 2011, 28(3):8-12. http://d.old.wanfangdata.com.cn/Periodical/bp201103003 [11] 北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用[M].北京:国防工业出版社, 1979:259-264. [12] 王新建.爆破空气冲击波及其预防[J].中国人民公安大学学报, 2003(4):41-43. doi: 10.3969/j.issn.1007-1784.2003.04.012Wang Xinjian. Blasting wave and prevention[J]. Journal of Chinese People's Public Security University, 2003(4):41-43. doi: 10.3969/j.issn.1007-1784.2003.04.012 期刊类型引用(13)
1. 焦晓龙,徐豫新,吴宗娅,周彤. 活性壳体温压战斗部对相控阵雷达天线的毁伤效应. 兵工学报. 2024(06): 1725-1734 . 百度学术
2. 张思维,张鹏程,王子,彭文联,谈玲华,张兴高. 温压炸药配方及毁伤评估研究进展. 兵工学报. 2024(S1): 147-160 . 百度学术
3. 刘锋,黄国强,李松林,程雨航. TATP空中爆炸冲击波传播规律的试验研究. 火炸药学报. 2024(10): 921-930 . 百度学术
4. 王闯,李亚宁,李建,王伯良. 装药量对温压炸药爆炸毁伤威力的影响. 爆破器材. 2023(04): 37-43 . 百度学术
5. 马雪娇,孔德仁,徐春冬,余益欣,张学辉. 高能战斗部威力参量测试技术现状. 测试技术学报. 2022(05): 426-435 . 百度学术
6. 叶希洋,苏健军,姬建荣,申景田. 一种基于图像的冲击波波阵面参数计算方法. 兵器装备工程学报. 2020(01): 87-90 . 百度学术
7. 陆路,蒲传金,肖定军,刘向前,薛冰,秦晓星. 空气冲击波在爆炸塔有限空间内传播规律研究. 爆破. 2020(02): 13-19 . 百度学术
8. 杨科之,刘盛. 空气冲击波传播和衰减研究进展. 防护工程. 2020(03): 1-10 . 百度学术
9. 李典,侯海量,朱锡,陈长海,李茂. 半球头柱形导弹战斗部爆炸载荷特性试验研究. 中国造船. 2020(03): 22-32 . 百度学术
10. 刘飞,任新见,何翔. 不同炸高爆炸条件地下工程内冲击波传播规律的工程算法. 含能材料. 2020(11): 1076-1082 . 百度学术
11. 朴忠杰,张爱娥,罗宇,欧亚鹏,焦清介. 铝粉粒度对奥克托今基空爆温压炸药能量释放的影响. 兵工学报. 2019(06): 1190-1197 . 百度学术
12. 金朋刚,任松涛,高赞. 温压炸药标准物质定值结果不确定度评定. 化学分析计量. 2018(S1): 67-69 . 百度学术
13. 程宇腾,林秋汉,李席,詹高澍,贾辉. 壳体约束强度对温压炸药空中爆炸性能的影响. 火炸药学报. 2016(06): 20-25 . 百度学术
其他类型引用(7)
-