温压炸药在野外近地空爆中的冲击波规律

赵新颖 王伯良 李席

赵新颖, 王伯良, 李席. 温压炸药在野外近地空爆中的冲击波规律[J]. 爆炸与冲击, 2016, 36(1): 38-42. doi: 10.11883/1001-1455(2016)01-0038-05
引用本文: 赵新颖, 王伯良, 李席. 温压炸药在野外近地空爆中的冲击波规律[J]. 爆炸与冲击, 2016, 36(1): 38-42. doi: 10.11883/1001-1455(2016)01-0038-05
Zhao Xinying, Wang Boliang, Li Xi. Shockwave characteristics of thermobaric explosive in free-field explosion[J]. Explosion And Shock Waves, 2016, 36(1): 38-42. doi: 10.11883/1001-1455(2016)01-0038-05
Citation: Zhao Xinying, Wang Boliang, Li Xi. Shockwave characteristics of thermobaric explosive in free-field explosion[J]. Explosion And Shock Waves, 2016, 36(1): 38-42. doi: 10.11883/1001-1455(2016)01-0038-05

温压炸药在野外近地空爆中的冲击波规律

doi: 10.11883/1001-1455(2016)01-0038-05
详细信息
    作者简介:

    赵新颖(1978—),女,博士研究生

    通讯作者:

    王伯良, boliangwang@163.com

  • 中图分类号: O382.4

Shockwave characteristics of thermobaric explosive in free-field explosion

  • 摘要: 为了研究温压炸药在敞开空间爆炸中冲击波的规律,选取典型温压炸药制成不同量级的裸药柱进行野外近地空爆实验,同时用TNT进行对比实验,获取温压炸药与TNT的冲击波参数并拟合得到相似律公式。结果表明,温压炸药的冲击波超压峰值在中远场略高于TNT;在相同对比距离处,温压炸药的比冲量明显高于TNT,在对比距离小于2 m/kg1/3的近场,温压炸药的比冲量达到TNT的2倍。引入超压-比冲量曲线描述冲击波特征,表明当超压峰值相同时,温压炸药比冲量更大, 超压峰值在20~50 kPa的中度以下毁伤范围时,温压炸药的比冲量比TNT高40%~60%,可产生更严重的毁伤效应。冲量是爆炸冲击波的重要毁伤元素,应建立与冲量有关的方法评价温压炸药的威力。
  • 图  1  温压炸药冲击波波形

    Figure  1.  Shockwave of thermobaric explosives

    图  2  冲击波参数

    Figure  2.  Shock wave parameters

    图  3  温压炸药与TNT的超压峰值

    Figure  3.  Peak overpressures of TBE and TNT

    图  4  温压炸药与TNT的比正压作用时间

    Figure  4.  Specific positive phase time of TBE and TNT

    图  5  温压炸药与TNT的比冲量

    Figure  5.  Specific impulse of TBE and TNT

    图  6  超压-比冲量关系曲线

    Figure  6.  Peak pressure-specific impulse curve

  • [1] Wildegger-Gaissmaier A E. Aspects of thermobaric weaponry[J]. ADF Health, 2003, 4(4):3-6.
    [2] 李芝绒, 王胜强, 殷俊兰.不同气体环境中温压炸药爆炸特性的试验研究[J].火炸药学报, 2013, 36(3):59-61. doi: 10.3969/j.issn.1007-7812.2013.03.014

    Li Zhirong, Wang Shengqiang, Yin Junlan. Experiment study of blast performance of thermobaric-explosive under different gas environment[J]. Chinese Journal of Explosives & Propellants, 2013, 36(3):59-61. doi: 10.3969/j.issn.1007-7812.2013.03.014
    [3] Jackson S I, Kiyanda C B, Short M. Experimental observations of detonation in ammonium-nitrate-fuel-oil (ANFO) surrounded by a high-sound-speed, shockless, aluminum confiner[J]. Proceedings of the Combustion Institute, 2011, 33(2):2219-2226. doi: 10.1016/j.proci.2010.07.084
    [4] Ruggirello K P, DesJardin P E, Baer M R. A reaction progress variable modeling approach for non-ideal multiphase explosives[J]. International Journal of Multiphase Flow, 2012, 42:128-151. doi: 10.1016/j.ijmultiphaseflow.2012.02.005
    [5] 郑波, 陈力, 丁雁生, 等.高能、含铝和温压炸药爆炸抛撒实验研究[J].弹箭与制导, 2008, 28(3):118-120. doi: 10.3969/j.issn.1673-9728.2008.03.036

    Zheng Bo, Chen Li, Ding Yansheng, et al. Experimental study on explosion dispersal of thermobaric explosive[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3):118-120. doi: 10.3969/j.issn.1673-9728.2008.03.036
    [6] Peuker J M, Krier H, Glumac N. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives[J]. Proceedings of the Combustion Institute, 2013, 34(1):2205-2212. http://cn.bing.com/academic/profile?id=ae941cf0182f126a5007ce32567a219f&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Hahma A, Palovuori K, Romu H. Experimental studies on metal fueled thermobaric explosives[C]//35th International Annual Conference of ICT. Karlsrune: ICT, 2006.
    [8] 李秀丽, 惠君明, 王伯良.云爆剂爆炸/冲击波参数研究[J].含能材料, 2008, 16(4):410-414. doi: 10.3969/j.issn.1006-9941.2008.04.012

    Li Xiuli, Hui Junming, Wang Boliang. Blast/shock wave parameters of single-event FAE[J]. Chinese Journal of Energetic Materials, 2008, 16(4):410-414. doi: 10.3969/j.issn.1006-9941.2008.04.012
    [9] 黄菊, 王伯良, 仲倩, 等.温压炸药能量输出结构的初步研究[J].爆炸与冲击, 2012, 32(2):164-168. doi: 10.3969/j.issn.1001-1455.2012.02.008

    Huang Ju, Wang Boliang, Zhong Qian, et al. A preliminary investigation on energy output structure of a thermobaric explosive[J]. Explosive and Shock Waves, 2012, 32(2):164-168. doi: 10.3969/j.issn.1001-1455.2012.02.008
    [10] 李世民, 李晓军, 郭彦朋.温压炸药自由场爆炸空气冲击波的数值模拟研究[J].爆破, 2011, 28(3):8-12. http://d.old.wanfangdata.com.cn/Periodical/bp201103003

    Li Shimin, Li Xiaojun, Guo Yanpeng. Numerical simulation study on airblast of thermobaric explosive explosion in free air[J]. Blasting, 2011, 28(3):8-12. http://d.old.wanfangdata.com.cn/Periodical/bp201103003
    [11] 北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用[M].北京:国防工业出版社, 1979:259-264.
    [12] 王新建.爆破空气冲击波及其预防[J].中国人民公安大学学报, 2003(4):41-43. doi: 10.3969/j.issn.1007-1784.2003.04.012

    Wang Xinjian. Blasting wave and prevention[J]. Journal of Chinese People's Public Security University, 2003(4):41-43. doi: 10.3969/j.issn.1007-1784.2003.04.012
  • 加载中
图(6)
计量
  • 文章访问数:  4424
  • HTML全文浏览量:  1297
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-18
  • 修回日期:  2015-01-08
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回