Explosion-driven electromagnetic induction pulse generator
-
摘要: 为了探索脉冲发生器新的技术方法,在传统脉冲发生器的基础上,提出了一种依靠爆炸驱动的电磁感应脉冲发生器。介绍了发生器的工作过程,对发生器中炸药的爆炸和冲击过程进行了计算和数值模拟,建立了带有初始电压和初始静磁场的发生器的工作电路模型,得出了感应电压的计算方法。设计了一种通过永磁体提供初始静磁场的脉冲发生器,并分别对装有两种不同炸药的发生器进行了实验。实验表明:爆速较高的炸药驱动发生器可产生峰值更高的电压脉冲。实验结果偏低于计算结果,原因是理论计算中简化了磁芯磁场和冲击波速度。Abstract: In this work, based on the traditional pulse generators, we present an electromagnetic induction generator driven by explosion as a new technology of electromagnetic pulse generator. Having described the working process of the generator, we simulated and calculated the shock process of the explosion. Furthermore, we established the model for the working circuit of the generator with initial voltage and static magnetic, obtaining the calculation method of the induced voltage. An experimental generator with initial static magnetic provided by permanent magnet was designed, and the generators respectively fitted with two different explosives were tested. The experimental results show that the generator driven by higher detonation velocity of explosive can produce higher peak and shorter rise time voltage pulse, which are found to be a little lower than the calculation results due to the simplification in theoretical calculation of the magnetic field of the core and the velocity of shock wave.
-
表 1 炸药与冲击波参数
Table 1. Parameters of explosive and shock wave
炸药 ρ0/(g·cm-3) γ D/(km·s-1) pH/GPa um/(km·s-1) Dm /(km·s-1) pm/GPa TNT 1.54 2.83 6.831 18.76 0.906 5.278 29.65 8701 1.64 2.91 8.245 28.51 1.197 5.760 42.75 表 2 炸药为TNT时磁芯内部冲击波参数
Table 2. Parameters of shock wave in magnetic core with TNT
监测点 t/μs um/(km·s-1) pm/GPa Dm /(km·s-1) 1 3.81 0.803 25.92 5.206 2 6.34 0.478 23.60 7.963 3 6.81 0.559 27.77 8.013 4 7.27 0.550 23.45 6.877 5 7.74 0.479 16.98 5.718 6 8.58 0.351 10.55 4.848 7 3.85 0.692 22.99 5.358 8 3.94 0.683 23.15 5.467 9 4.15 0.785 28.06 5.765 10 4.19 0.802 30.19 6.072 表 3 炸药为8701时磁芯内部冲击波参数
Table 3. Parameters of shock wave in magnetic core with 8701
监测点 t/μs um/(km·s-1) pm/GPa Dm /(km·s-1) 1 3.16 1.263 46.25 5.906 2 5.48 0.623 31.60 8.181 3 5.94 0.875 48.47 8.935 4 6.47 1.037 54.34 8.452 5 7.01 1.042 48.68 7.535 6 7.59 0.859 32.88 6.174 7 3.21 1.265 46.61 5.943 8 3.28 1.264 47.19 6.022 9 3.40 1.309 50.46 6.218 10 3.40 1.413 56.10 6.404 -
[1] 陈增凯, 孙新利, 陈黎梅.电磁脉冲战斗部的发展及其技术[J].火力与指挥控制, 2004, 29(4):10-12. doi: 10.3969/j.issn.1002-0640.2004.04.003Chen Zengkai, Sun Xinli, Chen Limei. Development and techniques of electromagnetic pulsed warhead[J]. Fire Control and Command Control, 2004, 29(4):10-12. doi: 10.3969/j.issn.1002-0640.2004.04.003 [2] 孙奇志, 龚兴根, 谢卫平, 等.高能量爆磁压缩电流发生器理论分析与实验研究[J].爆炸与冲击, 2003, 23(1):51-55. doi: 10.3321/j.issn:1001-1455.2003.01.010Sun Qizhi, Gong Xinggen, Xie Weiping, et al. Theoretic and experimental study of an explosive magnetic flux compression generator with high energy output[J]. Explosion and Shock Waves, 2003, 23(1):51-55. doi: 10.3321/j.issn:1001-1455.2003.01.010 [3] 龚兴根, 谢卫平, 蔡明亮, 等.高增益螺旋形爆炸磁通量压缩发生器[J].爆炸与冲击, 1998, 18(2):187-191. http://www.bzycj.cn/article/id/10402Gong Xinggen, Xie Weiping, Cai Mingliang, et al. Helical exploding magnetic flux compression generator with high gain[J]. Explosion and Shock Waves, 1998, 18(2):187-191. http://www.bzycj.cn/article/id/10402 [4] Altgiber L L. Magnetocumulative Generators[M]. Berlin: Springer, 1999:16-25. [5] Shkuratov S I, Talantsev E F, Baird J, et al. Transverse explosive shock-wave compression of Nd2Fe14B high-energy hard ferromagnets: Induced magnetic phase transition[C]//Shock Compression of Condensed Matter-2005. 2006: 282-285. [6] Shkuratov S I, Talantsev E F, Baird J, et al. Compact autonomous completely explosive pulsed power systems[C]//IEEE 34th International Conference on Plasma Science. 2007: 1347-1351. [7] Talantsev E F, Shkuratov S I, Dickens J C, et al. Completely explosive pulsed power minisystem[J]. Review of Scientific Instruments, 2003, 74:225-230. doi: 10.1063/1.1527719 [8] 伍俊英, 陈朗, 冯长根.爆炸去磁脉冲功率发生器的实验和理论计算[J].爆炸与冲击, 2007, 27(5):398-404. doi: 10.3321/j.issn:1001-1455.2007.05.003Wu Junying, Chen Lang, Feng Changgen. Experiments and theoretical calculation of explosive-driven shock wave ferromagnetic generators[J]. Explosion and Shock Waves, 2007, 27(5):398-404. doi: 10.3321/j.issn:1001-1455.2007.05.003 [9] Bancroft D, Peterson E L, Minshall S. Polymorphism of iron at high pressure[J]. Applied Physics, 1956, 27(3):291-298. doi: 10.1063/1.1722359 [10] 何勇, 李鸿涛.弹丸设计基础[M].南京:南京理工大学, 1990:329-333. [11] 北京工学院八系.爆炸及其作用[M].北京:国防工业出版社, 1979:222-239. [12] 蔡旭红, 李邵辉.有限长通电螺线管内部空间磁场的模拟[J].汕头大学学报:自然科学版, 2004, 19(2):28-31. http://d.old.wanfangdata.com.cn/Periodical/stdxxb-zrkxb200402006Cai Xuhong, Li Shaohui. Simulation for spatial magnetic field distribution in a finite solenoid[J]. Journal of Shantou University: Natural Science, 2004, 19(2):28-31. http://d.old.wanfangdata.com.cn/Periodical/stdxxb-zrkxb200402006 [13] 张世远, 路权, 薛荣华, 等.磁性材料基础[M].北京:科学出版社, 1988:370-371.