刻槽弹侵彻混凝土受力模型研究

张欣欣 武海军 黄风雷 段卓平 皮爱国

张欣欣, 武海军, 黄风雷, 段卓平, 皮爱国. 刻槽弹侵彻混凝土受力模型研究[J]. 爆炸与冲击, 2016, 36(1): 75-80. doi: 10.11883/1001-1455(2016)01-0075-06
引用本文: 张欣欣, 武海军, 黄风雷, 段卓平, 皮爱国. 刻槽弹侵彻混凝土受力模型研究[J]. 爆炸与冲击, 2016, 36(1): 75-80. doi: 10.11883/1001-1455(2016)01-0075-06
Zhang Xinxin, Wu Haijun, Huang Fenglei, Duan Zhuoping, Pi Aiguo. Mechanical model of the grooved-tapered projectile penetrating concrete targets[J]. Explosion And Shock Waves, 2016, 36(1): 75-80. doi: 10.11883/1001-1455(2016)01-0075-06
Citation: Zhang Xinxin, Wu Haijun, Huang Fenglei, Duan Zhuoping, Pi Aiguo. Mechanical model of the grooved-tapered projectile penetrating concrete targets[J]. Explosion And Shock Waves, 2016, 36(1): 75-80. doi: 10.11883/1001-1455(2016)01-0075-06

刻槽弹侵彻混凝土受力模型研究

doi: 10.11883/1001-1455(2016)01-0075-06
基金项目: 

国防基础科研计划项目 C1520110001

详细信息
    作者简介:

    张欣欣(1987-),男,博士研究生

    通讯作者:

    武海军,wuhjbit@hotmail.com

  • 中图分类号: O385

Mechanical model of the grooved-tapered projectile penetrating concrete targets

  • 摘要: 利用混凝土材料的动态球形空腔膨胀理论,建立了针对刻槽弹体的低速花瓣形受力模型和高速圆孔形受力模型,并采用这两种模型计算了刻槽弹体侵彻混凝土的侵深。结果表明:当初速低于1 000 m/s时,运用低速花瓣形受力模型计算得出的侵深和实验值的误差小于11%;当初速高于1 000 m/s时,运用高速圆孔形受力模型计算出的侵深和实验值的误差约为20%。综合实验过程和实验误差分析可知,建立的刻槽弹侵彻混凝土受力模型可用于刻槽弹对混凝土的侵彻能力分析。
  • 图  1  弹体实物图

    Figure  1.  Photograph of the projectile

    图  2  实验回收刻槽弹体

    Figure  2.  Recovered projectile

    图  3  刻槽弹体侵彻混凝土隧道区洞口外形

    Figure  3.  Hole formed in the tunnel stage

    图  4  实验回收弹体

    Figure  4.  Recovered projectiles

    图  5  实验后靶体照片

    Figure  5.  Target after the experiment

    图  6  低速花瓣侵彻模型下刻槽弹体的受力分析

    Figure  6.  Force analysis of the projectile using the model of petaling penetration at low speed

    图  7  高速圆孔侵彻模型下刻槽弹体的受力分析

    Figure  7.  Force analysis of the projectile using the model of round hole penetration at high speed

    图  8  低速花瓣侵彻模型下弹体侵彻深度

    Figure  8.  Penetration depth acquired by using petaling model at low speed

    图  9  混凝土抗压强度为50 MPa时刻槽弹和普通弹的侵彻深度

    Figure  9.  Penetration depths of the grooved-tapered projectile and the common projectile while the concrete compressive strengh is 50 MPa

    图  10  高速圆孔形侵彻弹体侵彻深度(v0 < 1 200 m/s)

    Figure  10.  Penetration depth acquired using the round hole model at high speed (v0<1 200 m/s)

    图  11  高速花瓣形侵彻弹体侵彻深度(v0 < 1 200 m/s)

    Figure  11.  Penetration depth acquired using the petaling model at high speed (v0 < 1 200 m/s)

    图  12  高速圆孔形侵彻弹体侵彻深度(v0>1 200 m/s)

    Figure  12.  Penetration depth acquired using the round hole model at high speed (v0>1 200 m/s)

    图  13  高速花瓣形侵彻弹体侵彻深度(v0>1 200 m/s)

    Figure  13.  Penetration depth acquired using the petaling model at high speed (v0>1 200 m/s)

    表  1  刻槽弹体侵彻混凝土计算误差(v0 < 1 200 m/s)

    Table  1.   Calculation error of the projectile penetrating the concrete (v0 < 1 200 m/s)

    v0/(m·s-1) δ/%
    圆孔模型 花瓣模型
    1 054 20.2 22.9
    1 060 19.6 22.4
    1 130 28.4 30.7
    1 150 24.4 26.8
    下载: 导出CSV

    表  2  刻槽弹体侵彻混凝土计算误差(v0>1 200 m/s)

    Table  2.   Table 2Calculation error of the projectile penetrating the concrete (v0>1 200 m/s)

    v0/(m·s-1) δ/%
    圆孔模型 花瓣模型
    1211 15.7 18.5
    1443 26.6 28.6
    1223 19.5 22.2
    1 402 25.0 27.1
    1 452 23.2 25.2
    下载: 导出CSV
  • [1] 梁斌, 陈小伟, 姬永强, 等.先进钻地弹概念弹的次口径高速深侵彻实验研究[J].爆炸与冲击, 2008, 28(1):1-9. doi: 10.3321/j.issn:1001-1455.2008.01.001

    Liang Bin, Chen Xiaowei, Ji Yongqiang, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J]. Explosion and Shock Waves, 2008, 28(1):1-9. doi: 10.3321/j.issn:1001-1455.2008.01.001
    [2] 王一楠.动能弹体高速侵彻混凝土机理研究[D].北京: 北京理工大学, 2009.
    [3] Wu H J, Qian F, Huang F L, et al. Projectile nose mass abrasion of high-speed penetration into concrete[J]. Advances in Mechanical Engineering, 2012, 4(6):512-530. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_97da7bc3256c93bf024a9ccbfbfefc90
    [4] Wu H J, Huang F L, Wang Y N, et al. Mass loss and nose shape change on ogive-nose steel projectiles during concrete penetration[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(3):273-280. http://cn.bing.com/academic/profile?id=c4a6ed7406e7152265f47e892e0c9cba&encoded=0&v=paper_preview&mkt=zh-cn
    [5] Wu H J, Wang Y N, Shan Y, et al. Mechanism of high-velocity projectile penetration into concrete[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(2):137-143. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226220937/
    [6] Wu H J, Wang Y N, Huang F L. Penetration concrete targets experiments with non-ideal & high velocity between 800 and 1 100 m/s[J]. International Journal of Modern Physics B, 2012, 22(9/10/11):1087-1093. doi: 10.1142/S0217979208046360
    [7] Erengil M E, Cargile D J. Advanced projectile concept for high speed penetration of concrete targets[C]//Proceedings of the 20th International Symposium on Ballistics. Orlando, Florida, 2002: 23-27.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  4815
  • HTML全文浏览量:  1281
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-23
  • 修回日期:  2014-04-25
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回