Thermal shock mechanism and thermal environment influencing factors of a new concentric canister launcher
-
摘要: 针对新型同心筒自力发射高速热冲击载荷下热环境评估与影响因子决策问题,结合弹性变形和域动分层结合的动网格技术,求解了二维轴对称Navier-Stokes方程,分析了新型路基同心筒流场机理与热冲击特性,并确定了热环境评价指标;通过建立以优化拉丁超立方试验设计和径向基神经网络为理论基础的近似数学模型,解决了CFD自动建模困难、计算量大的难点;结合径向基神经网络训练方法,对导弹热环境的影响因子进行了智能决策研究。分析表明:倒吸进入新型同心筒内筒的低温气体有力改善了同心筒热环境;建立的近似模型精度较高,满足工程需求;对导弹热环境的影响因子从大到小依次为筒底导流板直径、筒底导流板长度、导流器高度;为导弹热环境多学科优化设计提供参考。Abstract: In this work, by adopting dynamic mesh technology along with the spring based smoothing method and the laying based zone moving method, we have numerically solved the axisymmetric N-S equations, analyzed the flow field mechanism and thermal shock characteristics, identified the thermal environment evaluating and influencing factors that are essential for dealing with problems in decision making of the new land-based concentric canister launcher (CCL) under the high-speed thermal shock load condition, and determined the evaluation index of the thermal environment. The mathematic model was established by optimal Latin hypercube design and radial basis function neural network (RBFNN), thus greatly facilitating the automatic modeling and compensating for the large amount of calculation for CFD. The intelligent decision research of the influencing factors for the missile thermal environment was performed using the RBFNN training method. The numerical results show that the thermal environment of the internal canister and the external cylinder are improved by the cryogenic gas coming from the cylinder port; the approximate model is accurate enough to meet the engineering standards required; the influencing factors for the missile thermal environment load are, according to their ranking from high to low, are the following: The diameter of the cylinder bottom baffle plate, the length of the cylinder bottom baffle plate, the height of the deflector. The research of the influencing factors will lay a solid foundation for the multidisciplinary optimization of the thermal environment.
-
表 1 3种随机方案中观测1面相关参量
Table 1. Related parameters of three random schemes on observation plane 1
方案 Tmax/K $\int_{0}^{0.1}{(T-300)}\text{d}t$ 1 642.88 7.029 2 1 059.20 22.849 3 1 372.37 14.510 表 2 优化拉丁超立方设计样本空间
Table 2. Sample space of optimal Latin hypercube design
试验 L1/Max(L1) L2/Max(L2) d/Max(d) 1 0.613 6 0.905 6 0.936 5 2 0.823 7 0.571 4 0.796 6 3 0.810 2 0.796 6 0.822 0 4 0.688 1 0.593 2 0.663 1 ⋮ ⋮ ⋮ ⋮ 8 0.667 8 0.578 7 0.853 8 ⋮ ⋮ ⋮ ⋮ 26 0.606 8 0.680 4 0.847 5 ⋮ ⋮ ⋮ ⋮ 45 0.993 2 0.941 9 0.803 0 表 3 热环境评价指标随机误差分析
Table 3. Random error analysis of thermal environment evaluating index
试验 $\int_{0}^{0.1}{(T-300)}\text{d}t$ CFD计算值 径向基网络预测值 |ε|/% 6 11.901 4 11.676 9 1.89 15 20.417 3 20.660 9 1.19 29 13.720 6 13.229 8 3.71 38 15.852 2 15.699 8 0.96 54 18.396 3 18.085 5 1.69 -
[1] 杨风波, 马大为, 杨帆.高压弹射装置内弹道建模与计算[J].兵工学报, 2013, 34(5):527-534. http://d.old.wanfangdata.com.cn/Periodical/bgxb201305003Yang Fengbo, Ma Dawei, Yang Fan. Interior ballistics modeling and calculation of high-pressure ejection device[J]. Acta Armamentarii, 2013, 34(5):527-534. http://d.old.wanfangdata.com.cn/Periodical/bgxb201305003 [2] 张仁军, 鲍福延.两种不同注水方式的燃气蒸汽式发射系统内弹道性能比较[J].固体火箭技术, 2005, 28(1):5-9. doi: 10.3969/j.issn.1006-2793.2005.01.002Zhang Renjun, Bao Fuyan. Comparison of internal ballistic properties between gas and steam launching system in two different modes of water injection[J]. Journal of Solid Rocket Technology, 2005, 28(1):5-9. doi: 10.3969/j.issn.1006-2793.2005.01.002 [3] 邵立武, 姜毅, 马艳丽, 等.新型舰载同心筒发射过程流场研究[J].导弹与航天运载技术, 2011(4):54-58. doi: 10.3969/j.issn.1004-7182.2011.04.013Shao Liwu, Jiang Yi, Ma Yanli, et al. Launching process of the new type ship-borne concentric canister launcher[J]. Missiles and Space Vehicles, 2011(4):54-58. doi: 10.3969/j.issn.1004-7182.2011.04.013 [4] 赵汝岩, 黄志勇, 周红梅.潜载导弹近筒口点火数值仿真[J].固体火箭技术, 2012, 35(2):161-165. doi: 10.3969/j.issn.1006-2793.2012.02.005Zhao Ruyan, Huang Zhiyong, Zhou Hongmei. Numerical research on the underwater igniting process of submarine-based missile[J]. Journal of Solid Rocket Technology, 2012, 35(2):161-165. doi: 10.3969/j.issn.1006-2793.2012.02.005 [5] 姜毅, 郝继光, 刘群.同心筒垂直发射装置排导燃气流的改进[J].北京理工大学学报, 2007, 27(2):95-98. doi: 10.3969/j.issn.1001-0645.2007.02.001Jiang Yi, Hao Jiguang, Liu Qun. Improvement measures of exhausting the jet in the concentric vertical launching equipment[J]. Transactions of Beijing Institute of Technology, 2007, 27(2):95-98. doi: 10.3969/j.issn.1001-0645.2007.02.001 [6] 姜毅, 郝继光, 傅德彬, 等.新型"引射同心筒"垂直发射装置理论及试验研究[J].宇航学报, 2008, 29(1):236-241. doi: 10.3873/j.issn.1000-1328.2008.01.042Jiang Yi, Hao Jiguang, Fu Debin, et al. Study on theory and test of a new type concentric canister with jet flow vertical launcher[J]. Journal of Astronautics, 2008, 29(1):236-241. doi: 10.3873/j.issn.1000-1328.2008.01.042 [7] 马艳丽, 姜毅, 王伟臣, 等.湿式同心筒自力垂直热发射技术降温效果研究[J].弹道学报, 2010, 22(4):89-93. http://d.old.wanfangdata.com.cn/Periodical/ddxb201004022Ma Yanli, Jiang Yi, Wang Weichen, et al. Research on launching process cooling effect of wet concentric canister launcher[J]. Journal of Ballistics, 2010, 22(4):89-93. http://d.old.wanfangdata.com.cn/Periodical/ddxb201004022 [8] 于勇, 母云涛.新型变截面同心筒发射装置及其热环境气动原理研究[J].宇航学报, 2013, 34(9):1281-1287. doi: 10.3873/j.issn.1000-1328.2013.09.015Yu Yong, Mu Yuntao. Configuration and gas dynamic dynamics analysis for a new variable cross-section concentric canister launcher[J]. Journal of Astronautics, 2013, 34(9):1281-1287. doi: 10.3873/j.issn.1000-1328.2013.09.015 [9] 段宝福, 张猛, 李俊猛, 等.逐孔起爆震动参数预报的BP神经网络模型[J].爆炸与冲击, 2010, 30(4):401-406. doi: 10.11883/1001-1455(2010)04-0401-06Duan Baofu, Zhang Meng, Li Junmeng, et al. A BP neural network model for forecasting of vibration parameters from hole-by-hole detonation[J]. Explosion and Shock Waves, 2010, 30(4):401-406. doi: 10.11883/1001-1455(2010)04-0401-06 [10] 史秀志, 林大能, 陈寿如.基于粗糙集模糊神经网络的爆破振动危害预测[J].爆炸与冲击, 2009, 29(4):401-407. doi: 10.3321/j.issn:1001-1455.2009.04.012Shi Xiuzhi, Lin Daneng, Chen Shouru. Blasting-vibration-induced damage prediction by rough set-based fuzzy-neural network[J]. Explosion and Shock Waves, 2009, 29(4):401-407. doi: 10.3321/j.issn:1001-1455.2009.04.012 [11] Versteeg H K, Malalasekera W. An introduction to computational fluid dynamic: The finite volume method[M]. 2nd Edition. Prentice Hall, 2007. [12] 王志健, 杜佳佳.动网格在固体火箭发动机非稳态工作过程中的应用[J].固体火箭技术, 2008, 31(4):350-353. doi: 10.3969/j.issn.1006-2793.2008.04.011Wang Zhijian, Du Jiajia. Application of dynamic mesh to unsteady burning of solid rocket motor[J]. Journal of Solid Rocket Technology, 2008, 31(4):350-353. doi: 10.3969/j.issn.1006-2793.2008.04.011 [13] 杨风波, 马大为, 任杰, 等.新型车载同心筒流场机理与热环境研究[J].固体火箭技术, 2014, 37(3):301-306. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201403004Yang Fengbo, Ma Dawei, Ren Jie, et al. Research on flow field mechanism and thermal environment of a new vehicle-carried concentric canister launcher[J]. Journal of Solid Rocket Technology, 2014, 37(3):301-306. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201403004 [14] Orszag S A, Yakhot V, Flanney W S. Renormalization group modeling and turbulence, in international conference on near-wall turbulent flows[C]//Proceedings of the International Symposium on Mathematical Modeling of Turbulent Flows. Tokyo, Japan, 1995. [15] Agrell J, White R A. An experimental investigation of supersonic axisymmetric flow over boattails containing a centered propulsive jet: AU-913[R]. FFA Technical Note, 1974. [16] 李宗瑞.物料加热与干燥过程的反向研究: 传热与传质过程的最优化[D].沈阳: 东北大学, 1991.