不同地应力条件下切缝药包爆破的数值模拟

魏晨慧 朱万成 白羽 牛雷雷

魏晨慧, 朱万成, 白羽, 牛雷雷. 不同地应力条件下切缝药包爆破的数值模拟[J]. 爆炸与冲击, 2016, 36(2): 161-169. doi: 10.11883/1001-1455(2016)02-0161-09
引用本文: 魏晨慧, 朱万成, 白羽, 牛雷雷. 不同地应力条件下切缝药包爆破的数值模拟[J]. 爆炸与冲击, 2016, 36(2): 161-169. doi: 10.11883/1001-1455(2016)02-0161-09
Wei Chenhui, Zhu Wancheng, Bai Yu, Niu Leilei. Numerical simulation on cutting seam cartridge blasting under different in-situ stress conditions[J]. Explosion And Shock Waves, 2016, 36(2): 161-169. doi: 10.11883/1001-1455(2016)02-0161-09
Citation: Wei Chenhui, Zhu Wancheng, Bai Yu, Niu Leilei. Numerical simulation on cutting seam cartridge blasting under different in-situ stress conditions[J]. Explosion And Shock Waves, 2016, 36(2): 161-169. doi: 10.11883/1001-1455(2016)02-0161-09

不同地应力条件下切缝药包爆破的数值模拟

doi: 10.11883/1001-1455(2016)02-0161-09
基金项目: 

国家自然科学基金项目 51222401

国家自然科学基金项目 51374049

国家自然科学基金项目 51304037

中央高校基本科研业务费项目 N120101001

中央高校基本科研业务费项目 N120301002

中国博士后科学基金项目 2013M541238

详细信息
    作者简介:

    魏晨慧(1984—),男,博士,讲师

    通讯作者:

    朱万成,zhuwancheng@mail.neu.edu.cn

  • 中图分类号: O383.2;TD235

Numerical simulation on cutting seam cartridge blasting under different in-situ stress conditions

  • 摘要: 针对切缝药包定向爆破的特点,考虑岩石介质非均匀性的基础上,把岩石爆破视为爆炸应力波动态作用和爆生气体压力准静态作用的过程,基于损伤力学理论建立岩石爆破的力学模型,并对不同地应力条件下切缝药包爆破的裂纹演化规律进行数值模拟,分析不同地应力条件对切缝药包爆破效果的影响。模拟结果表明:采用切缝药包爆破时,裂纹主要萌生于切缝周边,沿切缝方向扩展,切缝对定向裂纹的控制作用明显;当考虑地应力作用,且最大地应力方向与切缝方向垂直时,不利于定向裂纹的扩展;最大地应力方向与切缝方向平行时,有利于定向裂纹的扩展。裂纹的扩展方向受控于切缝角度和最大地应力方向这2个条件,裂纹扩展规模则受到地应力的限制。
  • 图  1  不同均质度数值试样的弹性模量分布

    Figure  1.  Elastic modulus distribution of specimens with different homogeneity

    图  2  单轴应力状态下的本构关系

    Figure  2.  The constitutive law under uniaxial stress condition

    图  3  爆破损伤的计算模型

    Figure  3.  Numerical model for blasting damage

    图  4  爆炸应力波与爆生气体压力加载曲线

    Figure  4.  Load curve of blasting stress wave and explosion gas

    图  5(a)  无地应力时0°切缝角下爆破裂纹演化过程

    Figure  5(a).  Cracks evolution for cutting seam cartridge blasting without in-situ stress under cutting seam angle of 0°

    图  5(b)  无地应力时0°切缝角下爆破裂纹演化过程

    Figure  5(b).  Cracks evolution for cutting seam cartridge blasting without in-situ stress under cutting seam angle of 0°

    图  5(c)  无地应力时45°切缝角下爆破裂纹演化过程

    Figure  5(c).  Cracks evolution for cutting seam cartridge blasting without in-situ stress under cutting seam angle of 45°

    图  5(d)  无地应力时60°切缝角下爆破裂纹演化过程

    Figure  5(d).  Cracks evolution for cutting seam cartridge blasting without in-situ stress under cutting seam angle of 60°

    图  5(e)  无地应力时90°切缝角下爆破裂纹演化过程

    Figure  5(e).  Cracks evolution for cutting seam cartridge blasting without in-situ stress under cutting seam angle of 90°

    图  6(a)  侧压力系数为0.1时0°切缝角下切缝药包爆破裂纹演化过程

    Figure  6(a).  Cracks evolution for cutting seam cartridge blasting with lateral coefficient of 0.1 under cutting seam angle of 0°

    图  6(b)  侧压力系数为0.1时30°切缝角下切缝药包爆破裂纹演化过程

    Figure  6(b).  Cracks evolution for cutting seam cartridge blasting with lateral coefficient of 0.1 under cutting seam angle of 30°

    图  6(c)  侧压力系数为0.1时45°切缝角下切缝药包爆破裂纹演化过程

    Figure  6(c).  Cracks evolution for cutting seam cartridge blasting with lateral coefficient of 0.1 under cutting seam angle of 45°

    图  6(d)  侧压力系数为0.1时60°切缝角下切缝药包爆破裂纹演化过程

    Figure  6(d).  Cracks evolution for cutting seam cartridge blasting with lateral coefficient of 0.1 under cutting seam angle of 60°

    图  6(e)  侧压力系数为0.1时90°切缝角下切缝药包爆破裂纹演化过程

    Figure  6(e).  Cracks evolution for cutting seam cartridge blasting with lateral coefficient of 0.1 under cutting seam angle of 90°

    图  7  侧压力系数为1.0时切缝药包爆破裂纹最终分布

    Figure  7.  Crack distribution for cutting seam cartridge blasting with lateral coefficient of 1.0

    图  8  侧压力系数为5.0时切缝药包爆破裂纹最终分布

    Figure  8.  Cracks distribution for cutting seam cartridge blasting with lateral coefficient of 5.0

  • [1] 谢华刚, 阮怀宁, 吴玲丽.复合型切缝药包成缝机理及数值模拟实验[J].高压物理学报, 2012, 26(2):205-210. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201202014.htm

    Xie Huagang, Ruan Huaining, Wu Lingli. Slitting mechanism and numerical simulation experements of complex ligamented charge holders[J]. Chinese Journal of High Pressure Physics, 2012, 26(2):205-210. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201202014.htm
    [2] 罗勇, 沈兆武.切缝药包在定向断裂爆破中的应用研究[J].地质灾害与环境保护, 2005, 16(4):443-446. doi: 10.3969/j.issn.1006-4362.2005.04.024

    Luo Yong, Shen Zhaowu. Application study on orientation fracture blasting with slit-charge[J]. Journal of Geological Hazards and Environment Preservation, 2005, 16(4):443-446. doi: 10.3969/j.issn.1006-4362.2005.04.024
    [3] 姜琳琳.切缝药包定向断裂爆破机理与应用研究[D].北京: 中国矿业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11413-2010240570.htm
    [4] Foumey W L, Dally J W, Holloway D C. Controlled blasting with ligamented charge holders[J]. International Journal of Rock Mechanics & Mining Sciences, 1978, 15(3):121-129. http://www.sciencedirect.com/science/article/pii/0148906278900062
    [5] Zhu Z M, Xie H P, Mohanty B H. Numerical investigation of blasting-induced damage in cylindrical rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(2):111-121. http://www.sciencedirect.com/science/article/pii/S1365160907000731
    [6] Ma G W, An X M. Numerical simulation of blasting-induced rock fractures[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(6):966-975. http://www.sciencedirect.com/science/article/pii/S1365160907001864
    [7] Hagan T N. Rock breakage by explosives[J]. Acta Astron, 1979, 6(3/4):329-340. doi: 10.1016-0094-5765(79)90102-4/
    [8] Kutter H K, Fairhurst C. On the fracture process in blasting[J]. International Journal of Rock Mechanics & Mining Sciences, 1971, 8(3):181-202. http://d.old.wanfangdata.com.cn/Periodical/dxkj201706027
    [9] Donze F V, Bouchez J, Magnier S A. Modeling fractures in rock blasting[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(8):1153-1163. http://www.sciencedirect.com/science/article/pii/S1365160997800688
    [10] Tang C A. Numerical simulation of progressive rock failure and associated seismicity[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2):249-261. doi: 10.1016/S0148-9062(96)00039-3
    [11] Zhu W C, Li Z H, Zhu L, et al. Numerical simulation on rockburst of underground opening triggered by dynamic disturbance[J]. Tunnelling and Underground Space Technology, 2010, 25(5):587-599. doi: 10.1016/j.tust.2010.04.004
  • 加载中
图(16)
计量
  • 文章访问数:  4447
  • HTML全文浏览量:  1319
  • PDF下载量:  586
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-18
  • 修回日期:  2014-11-21
  • 刊出日期:  2016-03-25

目录

    /

    返回文章
    返回