烟幕初始云团半径变化规律理论模型及实验研究

许兴春 高欣宝 李天鹏 张俊坤

许兴春, 高欣宝, 李天鹏, 张俊坤. 烟幕初始云团半径变化规律理论模型及实验研究[J]. 爆炸与冲击, 2016, 36(2): 183-188. doi: 10.11883/1001-1455(2016)02-0183-06
引用本文: 许兴春, 高欣宝, 李天鹏, 张俊坤. 烟幕初始云团半径变化规律理论模型及实验研究[J]. 爆炸与冲击, 2016, 36(2): 183-188. doi: 10.11883/1001-1455(2016)02-0183-06
Xu Xingchun, Gao Xinbao, Li Tianpeng, Zhang Junkun. Theoretical model and experiment of radius variation of initial smoke cloud[J]. Explosion And Shock Waves, 2016, 36(2): 183-188. doi: 10.11883/1001-1455(2016)02-0183-06
Citation: Xu Xingchun, Gao Xinbao, Li Tianpeng, Zhang Junkun. Theoretical model and experiment of radius variation of initial smoke cloud[J]. Explosion And Shock Waves, 2016, 36(2): 183-188. doi: 10.11883/1001-1455(2016)02-0183-06

烟幕初始云团半径变化规律理论模型及实验研究

doi: 10.11883/1001-1455(2016)02-0183-06
详细信息
    作者简介:

    许兴春(1986—),男,博士研究生,doctxu@163.com

  • 中图分类号: O383;TJ5

Theoretical model and experiment of radius variation of initial smoke cloud

  • 摘要: 为了评估烟幕的遮蔽效能,需要对烟幕云团初始参数进行计算,即烟幕云团在爆炸能量下形成的最大半径。本文中基于一种简单烟幕发生装置,把云团的膨胀过程分为2个阶段,分别为等熵膨胀阶段和自由膨胀阶段,建立了烟幕云团膨胀的理论模型,对模型进行分析建立了烟幕云团膨胀过程微分方程组。采用四阶龙格-库塔方法求解得到烟幕云团的半径变化规律。通过实验结果分析可知,该理论模型能够描述给定装置烟幕云团膨胀的基本规律。通过缩比效应,可将其用于爆炸发烟装置初始云团参数的计算。
  • 图  1  发烟装置模型截面图

    Figure  1.  Model of smoke generator

    图  2  烟幕云团及粒子微元受力分析示意图

    Figure  2.  Schematic diagram of smoke cloud and force analysis on micro-unit

    图  3  云团半径随时间的变化时程曲线

    Figure  3.  Histories of smoke cloud radius

    图  4  测试系统示意图

    Figure  4.  Schematic diagram of testing system

    图  5  云团图像

    Figure  5.  Picture of smoke cloud

    图  6  图像二值化处理

    Figure  6.  Image binarization processing

    图  7  图像去除噪声处理

    Figure  7.  Image interference removal processing

    图  8  云团半径变化时程曲线

    Figure  8.  Histories of smoke cloud radius

  • [1] 张俊秀, 刘光烈.爆炸及其应用技术[M].北京:兵器工业出版社, 1998.
    [2] 闫俊宏, 闵江, 苏世明.对毫米波制导武器的烟幕干扰技术[J].光电技术应用, 2012(5):17-21. http://d.old.wanfangdata.com.cn/Periodical/gdjsyy201205007

    Yan Junhong, Min Jiang, Su Shiming. Smoke interfere technology against millimeter wave guidance weapon[J]. Electro-Optic Technology Application, 2012(5):17-21. http://d.old.wanfangdata.com.cn/Periodical/gdjsyy201205007
    [3] 梁柳, 徐迎, 金丰年.烟幕干扰技术综述[J].现代防御技术, 2007, 35(4):22-26. doi: 10.3969/j.issn.1009-086X.2007.04.006

    Liang Liu, Xu Ying, Jin Fengnian. Review on smoke interfere technology[J]. Modern Defence Technology, 2007, 35(4):22-26. doi: 10.3969/j.issn.1009-086X.2007.04.006
    [4] 罗雄文.烟幕干扰技术的现状与发展趋势[J].光电对抗与无源干扰, 2001(4):15-19. doi: 10.3969/j.issn.1673-1255.2001.04.005

    Luo Xiongwen. The current situation and development of smoke interfere technology[J]. Electro-Optic Warfare & Radar Passive Countermeasures, 2001(4):15-19. doi: 10.3969/j.issn.1673-1255.2001.04.005
    [5] 尹喜凤, 陈于忠, 陈宏达, 等.爆炸分散型复合干扰发烟剂使用技术研究[J].含能材料, 2003, 11(2):71-75. doi: 10.3969/j.issn.1006-9941.2003.02.005

    Yin Xifeng, Chen Yuzhong, Chen Hongda, et al. Studies on the application techniques of explosion dispersed composite interfering smoke agents[J]. Chinese Journal of Energetic Materials, 2003, 11(2):71-75. doi: 10.3969/j.issn.1006-9941.2003.02.005
    [6] 吴昱, 尹喜凤, 崔建林, 等.可膨胀石墨在爆炸分散型发烟剂中的应用[J].火工品, 2004(2):27-29. doi: 10.3969/j.issn.1003-1480.2004.02.008

    Wu Yu, Yin Xifeng, Cui Jianlin, et al. Application of expandable graphite in explosive dispersion pyrotechnic composition[J]. Initiators & Pyrotechnics, 2004(2):27-29. doi: 10.3969/j.issn.1003-1480.2004.02.008
    [7] 郝新红, 赵家玉, 赵志伟.烟火药燃烧转爆轰的定性实验研究[J].兵工安全技术, 1999(2):8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ199902006.htm

    Hao Xinhong, Zhao Jiayu, Zhao Zhiwei. Qualitative study of deflagration to detonation transition of pyrotechnic composition[J]. Ordnance Security Technology, 1999(2):8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ199902006.htm
    [8] 姚禄玖, 高钧麟, 肖凯涛, 等.烟幕理论与测试技术[M].北京:国防工业出版社, 2004.
    [9] 朱晨光, 潘功配, 关华, 等.烟幕云团形成初期的流动规律研究[J].含能材料, 2007, 15(5):540-543. doi: 10.3969/j.issn.1006-9941.2007.05.028

    Zhu Chenguang, Pan Gongpei, Guan Hua, et al. Initial flow ability of smoke cloud forming[J]. Chinese Journal of Energetic Materials, 2007, 15(5):540-543. doi: 10.3969/j.issn.1006-9941.2007.05.028
    [10] 陈宁, 潘功配, 陈厚和, 等.真空环境中烟幕云团形成阶段的膨胀模型[J].火工品, 2006(1):1-5. doi: 10.3969/j.issn.1003-1480.2006.01.001

    Chen Ning, Pan Gongpei, Chen Houhe, et al. Expansive model of smoke cloud forming course in vacuum[J]. Initiators & Pyrotechnics, 2006(1):1-5. doi: 10.3969/j.issn.1003-1480.2006.01.001
    [11] 陈宁, 潘功配, 陈厚和, 等.真空度对烟幕云团膨胀速率的影响[J].含能材料, 2007, 15(2):158-161. doi: 10.3969/j.issn.1006-9941.2007.02.019

    Chen Ning, Pan Gongpei, Chen Houhe, et al. Effect of different vacuum pressure on the expanding velocity of the smoke cloud[J]. Chinese Journal of Energetic Materials, 2007, 15(2):158-161. doi: 10.3969/j.issn.1006-9941.2007.02.019
    [12] 李秀丽, 惠君明, 解立峰, 等.红外热成像技术在云团爆炸测温中的应用[J].含能材料, 2008, 16(3):344-348. doi: 10.3969/j.issn.1006-9941.2008.03.026

    Li Xiuli, Hui Junming, Xie Lifeng. Application of Infrared thermo-imaging technology in temperature measurement of cloud explosion[J]. Chinese Journal of Energetic Materials, 2008, 16(3):344-348. doi: 10.3969/j.issn.1006-9941.2008.03.026
    [13] 奥尔连科.爆炸物理学[M].孙承纬, 译.北京: 科学出版社, 2011.
    [14] 赵文博, 姚栋, 王侃, 等.龙格库塔方法在求解瞬态中子扩散方程中的应用[J].原子能科学技术, 2013, 47(1):89-96. http://d.old.wanfangdata.com.cn/Periodical/yznkxjs201301017

    Zhao Wenbo, Yao Dong, Wang Kan, et al. Application of Runge-Kutta method to solve transient neutron diffusion equation[J]. Atomic Energy Science and Technology, 2013, 47(1):89-96. http://d.old.wanfangdata.com.cn/Periodical/yznkxjs201301017
    [15] 张磊, 袁礼.龙格库塔间断有限元方法在计算爆轰问题中的应用[J].计算物理, 2010, 27(4):509-517. doi: 10.3969/j.issn.1001-246X.2010.04.004

    Zhang Lei, Yuan Li. Runge-Kutta discontinuous galerkin method for detonation waves[J]. Chinese Journal of Computational Physics, 2010, 27(4):509-517. doi: 10.3969/j.issn.1001-246X.2010.04.004
    [16] 陈大伟, 蔚喜军.一维双曲守恒律的龙格-库塔控制体积间断有限元方法[J].计算物理, 2009, 26(4):501-509. doi: 10.3969/j.issn.1001-246X.2009.04.002

    Chen Dawei, Yu Xijun. RKCVDFEM for one-dimensional hyperbolic conservation laws[J]. Chinese Journal of Computational Physics, 2009, 26(4):501-509. doi: 10.3969/j.issn.1001-246X.2009.04.002
    [17] Burrage K, Burrage P M. High strong order explicit Runge-Kutta methods for stochastic ordinary differ-ential equations[J]. Applied Numerical Mathematics, 1996, 22(1):1-21.
    [18] Hu Jiancheng, Luo Min. Runge-Kutta approximations for stochastic ordinary differential equations[J]. Journal of Sichuan University: Natural Science Edition, 2012, 49(4):747-752. http://en.cnki.com.cn/Article_en/CJFDTotal-SCDX201204008.htm
    [19] Hu Shufang, Chen Chuanmiao. Runge-Kutta method, finite element method, and regular algorithms for Hamiltonian system[J]. Applied Mathematics and Mechanics: English Edition, 2013, 34(6):747-760. doi: 10.1007/s10483-013-1704-8
  • 加载中
图(8)
计量
  • 文章访问数:  4247
  • HTML全文浏览量:  1310
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-13
  • 修回日期:  2015-01-14
  • 刊出日期:  2016-03-25

目录

    /

    返回文章
    返回