开口型管道内瓦斯爆炸冲击波动压的数值模拟

洪溢都 林柏泉 朱传杰

洪溢都, 林柏泉, 朱传杰. 开口型管道内瓦斯爆炸冲击波动压的数值模拟[J]. 爆炸与冲击, 2016, 36(2): 198-209. doi: 10.11883/1001-1455(2016)02-0198-12
引用本文: 洪溢都, 林柏泉, 朱传杰. 开口型管道内瓦斯爆炸冲击波动压的数值模拟[J]. 爆炸与冲击, 2016, 36(2): 198-209. doi: 10.11883/1001-1455(2016)02-0198-12
Hong Yidu, Lin Baiquan, Zhu Chuanjie. Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes[J]. Explosion And Shock Waves, 2016, 36(2): 198-209. doi: 10.11883/1001-1455(2016)02-0198-12
Citation: Hong Yidu, Lin Baiquan, Zhu Chuanjie. Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes[J]. Explosion And Shock Waves, 2016, 36(2): 198-209. doi: 10.11883/1001-1455(2016)02-0198-12

开口型管道内瓦斯爆炸冲击波动压的数值模拟

doi: 10.11883/1001-1455(2016)02-0198-12
基金项目: 

国家自然科学基金项目 51204174

中央高校基本科研业务费专项项目 2012QNB01

详细信息
    作者简介:

    洪溢都(1989—),男,博士研究生,hongyidu@163.com

  • 中图分类号: O383

Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes

  • 摘要: 为了研究瓦斯爆炸冲击波的动压演化规律,利用数值模拟软件模拟开口型管道内的爆炸。结果表明:动压与流速在时间上存在较好的对应关系,基本同时出现正向和反向的峰值;动压在3个方向上不仅伴随传播距离的增大而不断增大,也伴随传播时间的延长而增大;沿管道方向(火焰传播方向)上的最大动压值是其他2个方向(管道径向)上的数千倍;相比爆炸超压而言,管道径向上的动压对爆炸破坏效应的影响较小,而沿管道方向上的动压造成的破坏效应不能忽视;验证了动压与流速的平方呈正比关系,同时通过分析给出了动压基于管道几何尺寸和流速的经验公式。
  • 图  1  实验管道示意图

    Figure  1.  Schematic of the experimental pipe

    图  2  爆炸超压数值模拟与实验结果对比

    Figure  2.  Comparison of explosion overpressure between simulation and experiment

    3a  0.5 m处动压与流速的时间对应关系

    3a.  Relationship between dynamic pressure and gas velocity at the point of 0.5 m

    3b  2.5 m处动压与流速的时间对应关系

    3b.  Relationship between dynamic pressure and gas velocity at the point of 2.5 m

    3c  4.5 m处动压与流速的时间对应关系

    3c.  Relationship between dynamic pressure and gas velocity at the point of 4.5 m

    3d  6.5 m处动压与流速的时间对应关系

    3d.  Relationship between dynamic pressure and gas velocity at the point of 6.5 m

    3e  8.5 m处动压与流速的时间对应关系

    3e.  Relationship between dynamic pressure and gas velocity at the point of 8.5 m

    3f  10.5 m处动压与流速的时间对应关系

    3f.  Relationship between dynamic pressure and gas velocity at the point of 10.5 m

    3g  12.5 m处动压与流速的时间对应关系

    3g.  Relationship between dynamic pressure and gas velocity at the point of 12.5 m

    3h  14.5 m处动压与流速的时间对应关系

    3h.  Relationship between dynamic pressure and gas velocity at the point of 14.5 m

    3i  16.5 m处动压与流速的时间对应关系

    3i.  Relationship between dynamic pressure and gas velocity at the point of 16.5 m

    3j  18.5 m处动压与流速的时间对应关系

    3j.  Relationship between dynamic pressure and gas velocity at the point of 18.5 m

    图  4  动压的正向峰值与传播距离的关系

    Figure  4.  Relationship between dynamic pressure peak and propagation distance

    5a  动压在x方向随时间的变化规律

    5a.  Dynamic pressure in x direction varying with time

    5b  动压在y方向随时间的变化规律

    5b.  Dynamic pressure in y direction varying with time

    5c  动压在z方向随时间的变化规律

    5c.  Dynamic pressure in z direction varying with time

    6a  在管道尺寸L/a=16.7时动压与流速的定量关系

    6a.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=16.7

    6b  在管道尺寸L/a=25时动压与流速的定量关系

    6b.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=25

    6c  在管道尺寸L/a=33.3时动压与流速的定量关系

    6c.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=33.3

    6d  在管道尺寸L/a=50时动压与流速的定量关系

    6d.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=50

    6e  在管道尺寸L/a=50时动压与流速的定量关系

    6e.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=50

    6f  在管道尺寸L/a=62.5时动压与流速的定量关系

    6f.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=62.5

    6g  在管道尺寸L/a=66.7时动压与流速的定量关系

    6g.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=66.7

    6h  在管道尺寸L/a=75时动压与流速的定量关系

    6h.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=75

    6i  在管道尺寸L/a=100时动压与流速的定量关系

    6i.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=100

    6j  在管道尺寸L/a=125时动压与流速的定量关系

    6j.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=125

    6k  在管道尺寸L/a=187.5时动压与流速的定量关系

    6k.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=187.5

    6l  在管道尺寸L/a=250时动压与流速的定量关系

    6l.  Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=250

    7a  偏差曲线方程中二次项系数与管道尺寸拟合关系

    7a.  Relationship between quadratic coefficient and pipe size

    7b  偏差曲线方程中一次项系数与管道尺寸拟合关系

    7b.  Relationship between monomial coefficient and pipe size

    7c  偏差曲线方程中常数项与管道尺寸拟合关系

    7c.  Relationship between constant and pipe size

    表  1  不同网格划分方法下的数值模拟结果与实验结果对比

    Table  1.   Comparison between experimental data and simulation results by different methods of grid partitioning

    测点 p/kPa ε/% p/kPa ε/%
    数值模拟(4 cm×4 cm×4 cm) 实验 数值模拟(2 cm×2 cm×2 cm) 实验
    2 213.2 196.5 8.05 202.8 196.5 -3.23
    6 199.4 179.2 11.31 186.4 179.2 -3.99
    10 141.5 120.6 17.36 110.5 120.6 8.35
    下载: 导出CSV
  • [1] 李波, 王凯, 魏建平, 等.2001-2012年我国煤与瓦斯突出事故基本特征及发生规律研究[J].安全与环境学报, 2013, 13(3):274-278. doi: 10.3969/j.issn.1009-6094.2013.03.061

    Li Bo, Wang Kai, Wei Jianping, et al. On the basic characteristic features and incidental regularity of coal and gas outbursts in China since from 2001 to 2012[J]. Journal of Safety and Environment, 2013, 13(3):274-278. doi: 10.3969/j.issn.1009-6094.2013.03.061
    [2] 殷文韬, 傅贵, 袁沙沙, 等.2001-2012年我国重特大瓦斯爆炸事故特征及发生规律研究[J].中国安全科学学报, 2013(2):141-147. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201302028.htm

    Yin Wentao, Fu Gui, Yuan Shasha, et al. Study on basic characteristics and occurrence regularity of major gas explosion accidents in Chinese coal mines during 2001-2012[J]. China Safety Science Journal, 2013(2):141-147. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201302028.htm
    [3] 黄平, 李晋杰, 杨珊.中国煤矿安全生产事故统计分析[C]//国际安全科学与技术学术研讨会.沈阳, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7936793
    [4] 朱月敏.煤矿安全事故统计分析[D].阜新: 辽宁工程技术大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D404979
    [5] 王佑安, 王震宇, 梁运涛.中国煤炭工业发展和安全事故总貌的统计分析和建议[C]//全国煤矿安全学术年会.广州, 2012. http://www.cnki.com.cn/Article/CJFDTotal-MKAQ2012S1052.htm
    [6] 林柏泉, 周世宁, 张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报, 1999(2):6-9. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb199902002

    Lin Baiquan, Zhou Shining, Zhang Rengui. Influence of barriers on flame transmission and explosion wave in gas explosion[J]. Journal of China University of Mining and Technology, 1999(2):6-9. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb199902002
    [7] Klemens R, Zydak P, Kaluzny M, et al. Dynamics of dust dispersion from the layer behind the propagating shock wave[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3):200-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c553469fe5b73dd55831bb064fbe1f56
    [8] Ciccarelli G, Johansen C T, Parravani M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion and Flame, 2010, 157(11):2125-2136. doi: 10.1016/j.combustflame.2010.05.003
    [9] Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009, 156(2):405-416. doi: 10.1016/j.combustflame.2008.07.010
    [10] Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. doi: 10.1016/j.pecs.2007.11.002
    [11] 吴望一.流体力学[M].北京:北京大学出版社, 2010.
    [12] Glasstone S. The effects of nuclear weapons[R]. US Department of Defense, 1964.
    [13] Kinney G F, Graham K J. Explosive shocks in air[M]. Berlin and New York: Springer-Verlag, 1985:282.
    [14] Landau L D, Lifshitz E M. Fluid mechanics[J]. Course of Theoretical Physics, 1987, 46(10):346-369. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223849711/
    [15] Zucrow M J, Hoffman J D. Gas dynamics[M]. New York: John Wiley and Sons, Inc, 1976.
    [16] 朱传杰.爆炸冲击波前流场扬尘特征及其多相破坏效应[D].徐州: 中国矿业大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10290-1011281066.htm
    [17] Jiang Bingyou, Lin Baiquan, Shi Shulei, et al. A numerical simulation of the influence initial temperature has on the propagation characteristics of, and safe distance from, a gas explosion[J]. International Journal of Mining Science and Technology, 2012, 22(3):307-310. doi: 10.1016/j.ijmst.2012.04.004
    [18] Maremonti M, Russo G, Salzano E, et al. Numerical simulation of gas explosions in linked vessels[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(3):189-194. doi: 10.1016/S0950-4230(98)00061-8
    [19] Pang L, Zhang Q, Wang T, et al. Influence of laneway support spacing on methane/air explosion shock wave[J]. Safety Science, 2012, 50(1):83-89. doi: 10.1016/j.ssci.2011.07.005
    [20] Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in stramberk experimental mine and AutoReaGas simulation[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2):280-287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f5915015eba45f2ace61d452cbdd371
    [21] Popat N R, Catlin C A, Arntzen B J, et al. Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models[J]. Journal of Hazardous Materials, 1996, 45(1):1-25. doi: 10.1016/0304-3894(95)00042-9
    [22] Zhu C J, Lin B Q, Jiang B Y. Flame acceleration of premixed methane/air explosion in parallel pipes[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2):383-390. doi: 10.1016/j.jlp.2011.10.004
    [23] 朱传杰, 林柏泉, 江丙友, 等.受限空间内爆燃波瞬态流速与超压的耦合关系[J].燃烧科学与技术, 2012, 18(4):326-330. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201204007

    Zhu Chuanjie, Lin Baiquan, Jiang Bingyou, et al. Coupled relationship between gas velocity and peak overpressure of deflagration wave in confined space[J]. Journal of Combustion Science and Technology, 2012, 18(4):326-330. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201204007
    [24] 朱传杰, 林柏泉, 江丙友, 等.瓦斯爆炸在封闭管道内冲击波振荡特征的数值模拟[J].振动与冲击, 2012, 31(16):8-12. doi: 10.3969/j.issn.1000-3835.2012.16.002

    Zhu Chuanjie, Lin Baiquan, Jiang Bingyou, et al. Numerical simulation on oscillation and shock of gas explosion in a closed end pipe[J]. Journal of Vibration and Shock, 2012, 31(16):8-12. doi: 10.3969/j.issn.1000-3835.2012.16.002
    [25] Zipf R K,, Sapko M J, Brune J F. Explosion pressure design criteria for new seals in U S coal mines[S]. Pittsburgh, Pennsylvania: The National Institute for Occupational Safety and Health (NIOSH), 2007.
    [26] Bray K N C. Studies of the turbulent burning velocity[C]//Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1990(431): 315-335. doi: 10.1098/rspa.1990.0133
    [27] Van Den Berg A C, Mercx W P M, Mouilleau Y V, et al. AutoReaGas: A CFD tool for gas explosion hazard analysis[C]//International Conference and Exhibition Offshore Structure Design, Hazards, Safety & Engineering. London, UK, 1994. https://wenku.baidu.com/view/e7476c7ebb68a98270fefa35.html
    [28] Bakke J R. Numerical simulation of gas explosions in two-dimensional geometries[R]. Christian Michelsen Institute, 1986.
    [29] AutoReaGas user manual version 3.1[M]. Century Dynamic Inc, 2002.
    [30] Oran E S, Boris J P, Young T, et al. Numerical simulations of detonations in hydrogen-air and methane-air mixtures[J]. Symposium on Combustion, 1981, 18(1):1641-1649. doi: 10.1016/S0082-0784(81)80168-3
    [31] Zipf R K, Gamezob V N, Sapkoa M J, et al. Methane-air detonation experiments at NIOSH Lake Lynn Laboratory[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2):295-301. doi: 10.1016/j.jlp.2011.05.003
    [32] Lea C J, Ledin H S. A review of the state of the art in gas explosion modelling: HSL-CM-00/04[R]. Health & Safety Laboratory, Buxton, UK, 2002.
    [33] Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials, 2002, 95(3):233-247. doi: 10.1016/S0304-3894(02)00161-9
    [34] Zhu C J, Lin B Q, Hong Y D, et al. Numerical simulations on relationships between gas velocity and overpressure of gas explosions in ducts[J]. Disaster Advances, 2013, 6(S1):217-227. http://cn.bing.com/academic/profile?id=d50f1d89ff1f8c1ae276a7be3ee8df99&encoded=0&v=paper_preview&mkt=zh-cn
    [35] Lin B Q, Hong Y D, Zhu C J, et al. Effect of length on the relationships between the gas velocity and peak overpressure of gas explosion disasters in closed-end pipes[J]. Disaster Advances, 2013, 6(S2):176-184.
  • 加载中
图(31) / 表(1)
计量
  • 文章访问数:  5724
  • HTML全文浏览量:  2308
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-18
  • 修回日期:  2014-10-24
  • 刊出日期:  2016-03-25

目录

    /

    返回文章
    返回