Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes
-
摘要: 为了研究瓦斯爆炸冲击波的动压演化规律,利用数值模拟软件模拟开口型管道内的爆炸。结果表明:动压与流速在时间上存在较好的对应关系,基本同时出现正向和反向的峰值;动压在3个方向上不仅伴随传播距离的增大而不断增大,也伴随传播时间的延长而增大;沿管道方向(火焰传播方向)上的最大动压值是其他2个方向(管道径向)上的数千倍;相比爆炸超压而言,管道径向上的动压对爆炸破坏效应的影响较小,而沿管道方向上的动压造成的破坏效应不能忽视;验证了动压与流速的平方呈正比关系,同时通过分析给出了动压基于管道几何尺寸和流速的经验公式。Abstract: In order to study the evolution of dynamic overpressure of deflagration, a simulation was carried out in an open end pipe. It was found that the dynamic pressure was closely correlated with the gas velocity so that they always arrive at the peak value at the same time. In addition, the first positive peak of the dynamic pressure was almost several times greater than that of the second. This may indicate that the blast wave has a greater influence on the dynamic pressure than the flame does. An empirical prediction equation was given to calculate the first and second positive peaks based on the propagation time. Maximum dynamic pressures were increased with the propagation distance in all the three directions (x, y and z), and so was with time. The maximum dynamic pressure value in the x direction was almost several thousand times greater than those in the other two directions. Compared with the explosive overpressure, the influence on the explosive damage by the dynamic pressure in the y and z direction was quite small. Three empirical formulas were given to calculate the maximum dynamic pressures in different directions. The relationship between the dynamic pressure and the square of the gas velocity was verified. An empirical formula of the dynamic overpressure was also given based on the length-diameter ratio and the gas velocity. The results may provide a reference for the study on the gas explosion in the limited spaces.
-
Key words:
- mechanics of explosion /
- dynamic pressure /
- pipe size /
- methane/air explosion /
- open-end pipes /
- gas velocity
-
表 1 不同网格划分方法下的数值模拟结果与实验结果对比
Table 1. Comparison between experimental data and simulation results by different methods of grid partitioning
测点 p/kPa ε/% p/kPa ε/% 数值模拟(4 cm×4 cm×4 cm) 实验 数值模拟(2 cm×2 cm×2 cm) 实验 2 213.2 196.5 8.05 202.8 196.5 -3.23 6 199.4 179.2 11.31 186.4 179.2 -3.99 10 141.5 120.6 17.36 110.5 120.6 8.35 -
[1] 李波, 王凯, 魏建平, 等.2001-2012年我国煤与瓦斯突出事故基本特征及发生规律研究[J].安全与环境学报, 2013, 13(3):274-278. doi: 10.3969/j.issn.1009-6094.2013.03.061Li Bo, Wang Kai, Wei Jianping, et al. On the basic characteristic features and incidental regularity of coal and gas outbursts in China since from 2001 to 2012[J]. Journal of Safety and Environment, 2013, 13(3):274-278. doi: 10.3969/j.issn.1009-6094.2013.03.061 [2] 殷文韬, 傅贵, 袁沙沙, 等.2001-2012年我国重特大瓦斯爆炸事故特征及发生规律研究[J].中国安全科学学报, 2013(2):141-147. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201302028.htmYin Wentao, Fu Gui, Yuan Shasha, et al. Study on basic characteristics and occurrence regularity of major gas explosion accidents in Chinese coal mines during 2001-2012[J]. China Safety Science Journal, 2013(2):141-147. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201302028.htm [3] 黄平, 李晋杰, 杨珊.中国煤矿安全生产事故统计分析[C]//国际安全科学与技术学术研讨会.沈阳, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7936793 [4] 朱月敏.煤矿安全事故统计分析[D].阜新: 辽宁工程技术大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D404979 [5] 王佑安, 王震宇, 梁运涛.中国煤炭工业发展和安全事故总貌的统计分析和建议[C]//全国煤矿安全学术年会.广州, 2012. http://www.cnki.com.cn/Article/CJFDTotal-MKAQ2012S1052.htm [6] 林柏泉, 周世宁, 张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报, 1999(2):6-9. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb199902002Lin Baiquan, Zhou Shining, Zhang Rengui. Influence of barriers on flame transmission and explosion wave in gas explosion[J]. Journal of China University of Mining and Technology, 1999(2):6-9. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb199902002 [7] Klemens R, Zydak P, Kaluzny M, et al. Dynamics of dust dispersion from the layer behind the propagating shock wave[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3):200-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c553469fe5b73dd55831bb064fbe1f56 [8] Ciccarelli G, Johansen C T, Parravani M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion and Flame, 2010, 157(11):2125-2136. doi: 10.1016/j.combustflame.2010.05.003 [9] Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009, 156(2):405-416. doi: 10.1016/j.combustflame.2008.07.010 [10] Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. doi: 10.1016/j.pecs.2007.11.002 [11] 吴望一.流体力学[M].北京:北京大学出版社, 2010. [12] Glasstone S. The effects of nuclear weapons[R]. US Department of Defense, 1964. [13] Kinney G F, Graham K J. Explosive shocks in air[M]. Berlin and New York: Springer-Verlag, 1985:282. [14] Landau L D, Lifshitz E M. Fluid mechanics[J]. Course of Theoretical Physics, 1987, 46(10):346-369. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223849711/ [15] Zucrow M J, Hoffman J D. Gas dynamics[M]. New York: John Wiley and Sons, Inc, 1976. [16] 朱传杰.爆炸冲击波前流场扬尘特征及其多相破坏效应[D].徐州: 中国矿业大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10290-1011281066.htm [17] Jiang Bingyou, Lin Baiquan, Shi Shulei, et al. A numerical simulation of the influence initial temperature has on the propagation characteristics of, and safe distance from, a gas explosion[J]. International Journal of Mining Science and Technology, 2012, 22(3):307-310. doi: 10.1016/j.ijmst.2012.04.004 [18] Maremonti M, Russo G, Salzano E, et al. Numerical simulation of gas explosions in linked vessels[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(3):189-194. doi: 10.1016/S0950-4230(98)00061-8 [19] Pang L, Zhang Q, Wang T, et al. Influence of laneway support spacing on methane/air explosion shock wave[J]. Safety Science, 2012, 50(1):83-89. doi: 10.1016/j.ssci.2011.07.005 [20] Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in stramberk experimental mine and AutoReaGas simulation[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2):280-287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f5915015eba45f2ace61d452cbdd371 [21] Popat N R, Catlin C A, Arntzen B J, et al. Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models[J]. Journal of Hazardous Materials, 1996, 45(1):1-25. doi: 10.1016/0304-3894(95)00042-9 [22] Zhu C J, Lin B Q, Jiang B Y. Flame acceleration of premixed methane/air explosion in parallel pipes[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2):383-390. doi: 10.1016/j.jlp.2011.10.004 [23] 朱传杰, 林柏泉, 江丙友, 等.受限空间内爆燃波瞬态流速与超压的耦合关系[J].燃烧科学与技术, 2012, 18(4):326-330. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201204007Zhu Chuanjie, Lin Baiquan, Jiang Bingyou, et al. Coupled relationship between gas velocity and peak overpressure of deflagration wave in confined space[J]. Journal of Combustion Science and Technology, 2012, 18(4):326-330. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201204007 [24] 朱传杰, 林柏泉, 江丙友, 等.瓦斯爆炸在封闭管道内冲击波振荡特征的数值模拟[J].振动与冲击, 2012, 31(16):8-12. doi: 10.3969/j.issn.1000-3835.2012.16.002Zhu Chuanjie, Lin Baiquan, Jiang Bingyou, et al. Numerical simulation on oscillation and shock of gas explosion in a closed end pipe[J]. Journal of Vibration and Shock, 2012, 31(16):8-12. doi: 10.3969/j.issn.1000-3835.2012.16.002 [25] Zipf R K,, Sapko M J, Brune J F. Explosion pressure design criteria for new seals in U S coal mines[S]. Pittsburgh, Pennsylvania: The National Institute for Occupational Safety and Health (NIOSH), 2007. [26] Bray K N C. Studies of the turbulent burning velocity[C]//Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1990(431): 315-335. doi: 10.1098/rspa.1990.0133 [27] Van Den Berg A C, Mercx W P M, Mouilleau Y V, et al. AutoReaGas: A CFD tool for gas explosion hazard analysis[C]//International Conference and Exhibition Offshore Structure Design, Hazards, Safety & Engineering. London, UK, 1994. https://wenku.baidu.com/view/e7476c7ebb68a98270fefa35.html [28] Bakke J R. Numerical simulation of gas explosions in two-dimensional geometries[R]. Christian Michelsen Institute, 1986. [29] AutoReaGas user manual version 3.1[M]. Century Dynamic Inc, 2002. [30] Oran E S, Boris J P, Young T, et al. Numerical simulations of detonations in hydrogen-air and methane-air mixtures[J]. Symposium on Combustion, 1981, 18(1):1641-1649. doi: 10.1016/S0082-0784(81)80168-3 [31] Zipf R K, Gamezob V N, Sapkoa M J, et al. Methane-air detonation experiments at NIOSH Lake Lynn Laboratory[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2):295-301. doi: 10.1016/j.jlp.2011.05.003 [32] Lea C J, Ledin H S. A review of the state of the art in gas explosion modelling: HSL-CM-00/04[R]. Health & Safety Laboratory, Buxton, UK, 2002. [33] Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials, 2002, 95(3):233-247. doi: 10.1016/S0304-3894(02)00161-9 [34] Zhu C J, Lin B Q, Hong Y D, et al. Numerical simulations on relationships between gas velocity and overpressure of gas explosions in ducts[J]. Disaster Advances, 2013, 6(S1):217-227. http://cn.bing.com/academic/profile?id=d50f1d89ff1f8c1ae276a7be3ee8df99&encoded=0&v=paper_preview&mkt=zh-cn [35] Lin B Q, Hong Y D, Zhu C J, et al. Effect of length on the relationships between the gas velocity and peak overpressure of gas explosion disasters in closed-end pipes[J]. Disaster Advances, 2013, 6(S2):176-184.