航天器火工冲击模拟试验及响应预示方法研究综述

赵欣 丁继锋 韩增尧 邹元杰

赵欣, 丁继锋, 韩增尧, 邹元杰. 航天器火工冲击模拟试验及响应预示方法研究综述[J]. 爆炸与冲击, 2016, 36(2): 259-268. doi: 10.11883/1001-1455(2016)02-0259-10
引用本文: 赵欣, 丁继锋, 韩增尧, 邹元杰. 航天器火工冲击模拟试验及响应预示方法研究综述[J]. 爆炸与冲击, 2016, 36(2): 259-268. doi: 10.11883/1001-1455(2016)02-0259-10
Zhao Xin, Ding Jifeng, Han Zengyao, Zou Yuanjie. Review of pyroshock simulation andresponse prediction methods in spacecraft[J]. Explosion And Shock Waves, 2016, 36(2): 259-268. doi: 10.11883/1001-1455(2016)02-0259-10
Citation: Zhao Xin, Ding Jifeng, Han Zengyao, Zou Yuanjie. Review of pyroshock simulation andresponse prediction methods in spacecraft[J]. Explosion And Shock Waves, 2016, 36(2): 259-268. doi: 10.11883/1001-1455(2016)02-0259-10

航天器火工冲击模拟试验及响应预示方法研究综述

doi: 10.11883/1001-1455(2016)02-0259-10
详细信息
    作者简介:

    赵欣(1982—),女,博士,工程师,zhaoxinbhu@126.com

  • 中图分类号: O32;V414;V416

Review of pyroshock simulation andresponse prediction methods in spacecraft

  • 摘要: 航天器火工冲击力学环境是由星箭分离、部组件展开等工作过程中的火工品起爆引起的作用于结构上的高频、高加速度量级的瞬态冲击响应,能对航天器上含有晶振、脆性材料等的精密电子设备造成致命损伤,是航天器需要经历的最苛刻的力学环境之一。本文中,对国内外航天器火工冲击地面试验方法和环境预示方法做了全面、详细的介绍,总结了这两个方面的研究进展,分析了我国在这两个方面与航天强国的差距。最后,从我国航天工程实际需求出发,提出了今后航天器火工冲击领域应重点开展的研究方向。
  • 图  1  典型火工爆炸式冲击模拟试验装置[11]

    Figure  1.  Ordnance-generated pyroshock simulator

    图  2  2010年Alphabus卫星SHOGUN试验现场[12]

    Figure  2.  SHOGUN test spot for Alphabus in 2010

    图  3  机械式冲击模拟试验装置示意图[11]

    Figure  3.  Resonant fixtures for MIPS

    图  4  MIPS试验台原理图[9]

    Figure  4.  MIPS simulator

    图  5  意大利研制的MIPS模拟试验装置[20]

    Figure  5.  A mechanical impulse pyroshock simulator in Italy

    图  6  美国研制的可调节谐振梁装置[21]

    Figure  6.  A tunable resonant beam device in America

    图  7  Walls结构响应路径衰减示意图[20]

    Figure  7.  Level decrease in the Walls-structure

    表  1  试验外推方法比较

    Table  1.   Comparison of different extrapolations

    方法 准确性 可操作性 控制参数 适用范围
    经验模型法 预示精度较低 简便 距冲击源距离、冲击源类型、过连接面数目、材料和结构类型 任意型号适用
    数据外推法 准确性较高 简便 结构构型、冲击源能量、距冲击源距离 新型航天器和参考航天器采用的火工品和结构构型相似
    子结构路径外推法 准确性较高 相对复杂 传递路径上的连接数、距冲击源轴向距离、距冲击源径向距离 特定型号航天器
    下载: 导出CSV
  • [1] Dynamic environmental criteria: NASA-HDBK-7005[S]. USA, 2001.
    [2] Pyroshock test criteria: NASA-STD-7003A[S]. USA, 2011.
    [3] Environment engineering considerations and laboratory tests: MIL-STD-810F[S]. USA: Department of Defense, 2000.
    [4] Filippi E. Pyroshock simulation using the alcatel etca test facility[C]//Launch Vehicle Vibrations. First European Conference. Toulouse: CNES, 1999.
    [5] Meoning C J. Pyrotechnic shock flight failures[C]//Institute of Environmental Sciences Pyrotechnic Shock Tutorial Program, 31st Annual Technical Meeting. 1985.
    [6] Mcgrath M B, Rader W P. Aerospace systems pyrotechnic shock data. Volume Ⅶ: Investigation of mass loading effects[R]. N71-19250, 1970.
    [7] Environment engineering considerations and laboratory tests[M]. USA: Department of Defense, 2000.
    [8] 丁继锋, 赵欣, 韩增尧, 等.航天器火工冲击技术研究进展[J].宇航学报, 2014, 35(12):1339-1349. doi: 10.3873/j.issn.1000-1328.2014.12.001

    Ding Jifeng, Zhao Xin, Han Zengyao. Research development of spacecraft pyroshock technique[J]. Journal of Astronautics, 2014, 35(12):1339-1349. doi: 10.3873/j.issn.1000-1328.2014.12.001
    [9] Piersol A G, Paez T L. Harris' shock and vibration handbook[M]. 6th ed. New York: The McGraw-Hill Companies, Inc, 2010.
    [10] 军用装备实验室环境试验方法第27部分: 爆炸分离冲击实验: GJB 150.27-2009[S]. 2009.
    [11] Lee J R, Chia C C, Kong C W. Review of pyroshock wave measurement and simulation for space systems[J]. Measurement, 2012, 45(4):631-642. doi: 10.1016/j.measurement.2011.12.011
    [12] Http://Telecom.Esa.Int/Telecom/www/Object/Index.Cfm?Fobjectid=30565, Available.
    [13] Girard A, Pont C, Courau E. Very first results form pyroshock database for satellites[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.
    [14] Courau E, Roy P. Ariane 5 shock environment qualification for an earth observation satellite[C]//European Conference on Spacecraft Structure, Material & Mechanical Testing 2005. Noordwijk, The Netherlands, 2005.
    [15] Filippi E, Dolez F. Development of the alcatel etca pyroshock test facility[C]//European Conference on Spacecraft Structures, Materials and Mechanical Testing 1999. Braunschweig, Germany, 1999.
    [16] Filippi E, Attouoman H, Dolez B. Pyroshcok simulation using the alcatel etca test facility[C]//Launch Vehicle Vibrations. First European Conference. Toulouse: CNES, 1999.
    [17] Dilhan D, Piquereau A, Bonnes L. Definition and manufacturing of the pyroshock bench[C]//7th ESA/CNES International Workshop on Space Pyrotechnics ESTEC. 2008.
    [18] 刘斌, 吴江.用火工品产生中高量级冲击的试验技术研究[J].强度与环境, 2007, 34(3):8-13. doi: 10.3969/j.issn.1006-3919.2007.03.002

    Liu Bin, Wu Jiang. A study of producing high level shock environment by pyrotechnic device[J]. Structure & Environment Engineering, 2007, 34(3):8-13. doi: 10.3969/j.issn.1006-3919.2007.03.002
    [19] Dilhan D, Cipolla V, Grzeskowiak H. Pyroshock generation[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.
    [20] Ali K, Juan F. Tunable beam pyroshock simulation system[C]//Spacecraft and Launch Vehicle Dynamic Environments Workshop. California, USA, 2007.
    [21] Benedetti M D, Garofalo G, Zumpano M, et al. On the damping effect due to bolted junctions in space structures subjected to pyro-shock[J]. Acta Astronautica, 2007, 60(12):947-956. doi: 10.1016/j.actaastro.2006.11.011
    [22] Himelblau H, Piersol A G, Wise J H, et al. Handbook for dynamic data acquisition and analysis. Appendix A: Pyroshock data acquisition and analysis[M]. Mt Prospect, IL: Institute of Environmental Sciences, 1994.
    [23] Evans M J, Neubert V H, Bement L J. Measurement, data analysis, and prediction of oyrotechnic shock from pin-pullers and separation joints[J]. Shock and Vibration Bulletin, 1987, 57(2). https://www.researchgate.net/publication/23894381_Measurement_data_analysis_and_prediction_of_pyrotechnic_shock_from_pin-pullers_and_separation_joints
    [24] Smallwood D O. An improved recursive formula for calculating shock response spectra[J]. Shock and Vibration Bulletin, 1981, 51(2):211-217. http://cn.bing.com/academic/profile?id=97d8a3b9117c4662f9b75141bb3d9e86&encoded=0&v=paper_preview&mkt=zh-cn
    [25] Hughes W O, Mcnelis A M. Statistical analysis of a large sample size pyroshock test data set including post flight data assessment[R]. Cleveland, Ohio: Glenn Research Center, 2009.
    [26] Shi Q, Ando S, Seko H, et al. The summarization of pyroshock testing data and SRS level prediction methodology[C]//The 5th International Symposium on Environmental Testing for Space Programmes. Noordwijk, The Netherlands, 2004.
    [27] Ullio R, Marucchi-Chierro P C. Utlization of prediction methods in the shock environment evaluation[C]//The European Conference on Spacecraft Structure, Materials and Mechanical Testing 2001. Noofdwijk, The Netherlands, 2001.
    [28] Girard A, Courau E, Bugeat L P. Pyroshock database for satellites[C]//European Conferenc on Spacecraft Structures, Materials and Mechanical Testing 2000. Noordwijk, the Netherlands, 2000.
    [29] Zukas J A. Introduction to hydrocodes[M]. Elsevier, 2004.
    [30] 白金泽.LS-DYNA 3D理论基础与实例分析[M].北京:科学出版社, 2005.
    [31] 张雄, 王天舒.计算动力学[M].北京:清华大学出版社, 2007.
    [32] Mary S, Cipolla V, Courau E, et al. Shock propagation simulation using FEM software[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.
    [33] 姚德源, 王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社, 1995.
    [34] Manning J E, Lee K. Predicting mechanical shock transmission[J]. Shock and Vibration Bulletin, 1968, 37(4):65-70.
    [35] Sun H B, Sun J C, Richards E J. Prediction of total loss factors of structures. Part Ⅲ: Effective loss factors in quasi-transient conditions[J]. Journal of Sound and Vibration, 1986, 106(3):465-479. doi: 10.1016/0022-460X(86)90192-6
    [36] Fahy J F, Yao D Y. Power flow between non-conservatively coupled oscillators[J]. Journal of Sound and Vibration, 1987, 114(1):1-11. doi: 10.1016-S0022-460X(87)80227-4/
    [37] Borello G. SEA航天应用[M]. Belgium: Inter AC, 2010.
    [38] Borello G, Courjal A. Modelling payloads using SEA for vibroacoustic and shock prediction[R]. France: Inter AC-L'Union, 2005.
    [39] SEA: Shock module of SEA+ user's guide[M]. Inter AC, Inc, 2013.
    [40] Dalton E C, Chambers B S. Analysis and validation testing of impulsive load response in complex, multi-compartmented structures[C]//Proceedings of the 36th AIAA Structures, Structural Dynamics, and Materials Conference. 1995.
    [41] Dalton E C, Frydman A, Li A, et al. High frequency shock predictions in armored vehicles: Ags case study[C]//Proceedings of the 16th International Symposium on Ballistics. San Francisco, CA, 1996.
    [42] Dalton E C, Loper R B, Frydman A, et al. Simulation of ballistic shock in composite armored vehicles[C]//Proceedings of the 68th Shock and Vibration Symposium. 1997.
    [43] Dalton E C. High frequency shock prediction, short course notes[M]. Military Technology, Inc, 1999.
    [44] Ullio R, Marucchi-Chierro P C. Auto SEA shock application on shock event simulation: Study case and problematics encountered[R]. Toulouse: Euro PAM, 2006.
    [45] Lee D O, Han J H, Jang H W, et al. Shock respones prediction of a low altitude earth observation satellite during launch vechicle separation[J]. International Journal of Aeronautical & Space Sciences, 2010, 11(1):49-57.
    [46] 王军评, 毛勇建, 黄含军, 等.统计能量分析法在爆炸分离冲击响应预示中的应用[J].航天器环境工程, 2011, 28(5):414-420. doi: 10.3969/j.issn.1673-1379.2011.05.002

    Wang Junping, Mao Yongjian, Huang Hanjun, et al. Application of statistical energy analysis method in prediction of pyroshock responses[J]. Spacecraft Environment Engineering, 2011, 28(5):414-420. doi: 10.3969/j.issn.1673-1379.2011.05.002
    [47] 柯受全, 金恂叔.卫星环境工程和模拟试验(下)[M].北京:宇航出版社, 1996.
    [48] 焦亮, 邓明.爆炸分离冲击试验分析[J].电子产品可靠性与环境试验, 2013, 31(1):31-34. doi: 10.3969/j.issn.1672-5468.2013.01.007

    Jiao Liang, Deng Ming. The pyroshock test[J]. Electronic Product Reliability and Environmental Testing, 2013, 31(1):31-34. doi: 10.3969/j.issn.1672-5468.2013.01.007
    [49] 马斌捷, 张建华, 吴江.火工品爆炸加载方法在火箭分离冲击环境模拟试验中的应用与效果[J].强度与环境, 2007, 34(5):1-7. doi: 10.3969/j.issn.1006-3919.2007.05.001

    Ma Binjie, Zhang Jianhua, Wu Jiang. Applications and effects of pyrotechnic explode loading in shock environment simulation experiment of rocket separation[J]. Structure & Enviroment Engineering, 2007, 34(5):1-7. doi: 10.3969/j.issn.1006-3919.2007.05.001
    [50] 毕文辉, 严楠, 何春全, 等.航天火工品爆炸冲击多参量的测试[J].计测技术, 2009, 29(3):14-16. doi: 10.3969/j.issn.1674-5795.2009.03.005

    Bi Wenhui, Yan Nan, He Chunquan, et al. Measurement of pyroshock for explosive initiating device used in spacecraft[J]. Metrology & Measurement Technology, 2009, 29(3):14-16. doi: 10.3969/j.issn.1674-5795.2009.03.005
    [51] 张欢, 刘天雄, 李长江, 等.航天器火工冲击环境防护技术现状与应用[J].航天器工程, 2014, 23(2):104-113. doi: 10.3969/j.issn.1673-8748.2014.02.018

    Zhang Huan, Liu Tianxiong, Li Changjiang, et al. Status and application analysis of spacecraft pyroshock protection techniques[J]. Spacecraft Engineering, 2014, 23(2):104-113. doi: 10.3969/j.issn.1673-8748.2014.02.018
    [52] 毛勇建, 李玉龙, 陈颖, 等.炸药条加载圆柱壳的数值模拟(Ⅱ):解耦分析与实验验证[J].高压物理学报, 2013, 27(1):76-82. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201301012.htm

    Mao Yongjian, Li Yulong, Chen Ying, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅱ): Decoupling analysis and experimental validation[J]. Chinese Journal of High Pressure Physics, 2013, 27(1):76-82. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201301012.htm
    [53] 毛勇建, 李玉龙, 陈颖, 等.炸药条加载圆柱壳的数值模拟(Ⅰ):流固耦合模拟[J].高压物理学报, 2012, 26(2):155-162. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201202007.htm

    Mao Yongjian, Li Yulong, Chen Ying, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅰ): Fluid-structure interaction simulation[J]. Chinese Journal of High Pressure Physics, 2012, 26(2):155-162. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201202007.htm
    [54] 王军评, 毛勇建, 黄含军.点式火工分离装置冲击载荷作用机制的数值模拟研究[J].振动与冲击, 2013, 32(2):9-13. doi: 10.3969/j.issn.1000-3835.2013.02.003

    Wang Junping, Mao Yongjian, Huang Hanjun. Numerical simulation for impulsively loading mechanism of a point pyrotechnic separation device[J]. Journal of Vibration and Shock, 2013, 32(2):9-13. doi: 10.3969/j.issn.1000-3835.2013.02.003
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  7439
  • HTML全文浏览量:  3378
  • PDF下载量:  850
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-27
  • 修回日期:  2014-08-21
  • 刊出日期:  2016-03-25

目录

    /

    返回文章
    返回