飞机撞击建(构)筑物研究进展

刘晶波 韩鹏飞 林丽 陆新征 岑松

刘晶波, 韩鹏飞, 林丽, 陆新征, 岑松. 飞机撞击建(构)筑物研究进展[J]. 爆炸与冲击, 2016, 36(2): 269-278. doi: 10.11883/1001-1455(2016)02-0269-10
引用本文: 刘晶波, 韩鹏飞, 林丽, 陆新征, 岑松. 飞机撞击建(构)筑物研究进展[J]. 爆炸与冲击, 2016, 36(2): 269-278. doi: 10.11883/1001-1455(2016)02-0269-10
Liu Jingbo, Han Pengfei, Lin Li, Lu Xinzheng, Cen Song. Research progress of buildings and structures subjected to aircraft impact[J]. Explosion And Shock Waves, 2016, 36(2): 269-278. doi: 10.11883/1001-1455(2016)02-0269-10
Citation: Liu Jingbo, Han Pengfei, Lin Li, Lu Xinzheng, Cen Song. Research progress of buildings and structures subjected to aircraft impact[J]. Explosion And Shock Waves, 2016, 36(2): 269-278. doi: 10.11883/1001-1455(2016)02-0269-10

飞机撞击建(构)筑物研究进展

doi: 10.11883/1001-1455(2016)02-0269-10
基金项目: 

国家科技重大专项项目 2011ZX06002-10

详细信息
    作者简介:

    刘晶波(1956—),男,博士,教授,博士生导师

    通讯作者:

    韩鹏飞,feixuehan2003@sina.com

  • 中图分类号: O383; TU312; TB122

Research progress of buildings and structures subjected to aircraft impact

  • 摘要: 飞机撞击重要建(构)筑物会导致灾难性后果。本文从试验研究、理论分析、数值模拟等3个方面对飞机撞击建(构)筑物的国内外研究现状,相关研究难点、需要注意的问题和研究方向及趋势进行总结,包括:缩比试验的系统和验证,飞机撞击力模型,撞击所致局部破坏计算公式,飞机和建(构)筑物的精细化建模,撞击所致振动特性,撞击荷载和火荷载对结构的耦合毁伤效应,一般模型和精细化模型、解耦和耦合方法以及不同数值模拟程序计算结果的对比分析等方面,以期为后续研究提供参考。
  • 图  1  撞击试验中弹体示意图

    Figure  1.  Sketch of projectile in impact test

    图  2  装有液体的弹体撞击试验装置

    Figure  2.  Impact test apparatus of projectile loaded with liquid

    图  3  双钢板混凝土复合靶板结构图

    Figure  3.  Structural diagram of steel-concrete-steel sandwich composite plate target

    图  4  加速系统和弹体

    Figure  4.  Acceleration system and projectile

    图  5  F-4鬼怪飞机撞击和靶板破坏情景[17]

    Figure  5.  View of F-4 phantom aircraft during impact and target damage after impact[17]

    图  6  机撞击变形靶板(集中质量模型)

    Figure  6.  Aircraft impact on deformable target(lumped-mass model)

    图  7  F-16战机撞击双钢板混凝土板

    Figure  7.  F-16 Aircraft impact on steel-concrete-steel sandwich composite plate

    8(a)  波音767飞机撞击世贸大厦实际场景

    8(a).  Actual photograph of Boeing 767 aircraft impacting the World Trade Center

    8(b)  波音767飞机撞击世贸大厦数值模拟结果

    8(b).  Simulation result of Boeing 767 aircraft impacting the World Trade Center

    表  1  文献中撞击力计算公式

    Table  1.   Impact force calculation formulas in reference

    模型来源 撞击力计算公式
    文献[1] F=pc+μvr2
    文献[20] $ F=-\left[\frac{1}{2} \mu v_{\mathrm{r}}^{2}(1+f)+e\right]$
    文献[21] F=pc+αμvr2
    文献[22] $ F=p_{\mathrm{c}}+\frac{1}{2} \mu v_{\mathrm{r}}^{2}(1+f)+\sqrt{f} m_{\mathrm{c}} \frac{\mathrm{d} v_{\mathrm{t}}}{\mathrm{d} t}+\frac{1}{v_{\mathrm{r}}} \frac{\mathrm{d} E_{\mathrm{a}}}{\mathrm{d} t}$
    下载: 导出CSV
  • [1] Riera J D. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design, 1968, 8(4):415-426. http://cn.bing.com/academic/profile?id=2e9e280649d24338b6a3c5d066e9913c&encoded=0&v=paper_preview&mkt=zh-cn
    [2] Riera J D. A critical reappraisal of nuclear power plant safety against accidental aircraft impact[J]. Nuclear Engineering and Design, 1980, 57(1):193-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/016224398100600403
    [3] Henkel F O, Wölfel H. Building concept against airplane crash[J]. Nuclear Engineering and Design, 1984, 79(3):397-409. https://www.sciencedirect.com/science/article/pii/0029549384900529
    [4] 汤搏.关于核电厂防大型商用飞机撞击的要求:核电发展面临的新挑战[J].核安全, 2010(3):1-12. doi: 10.3969/j.issn.1672-5360.2010.03.001

    Tang Bo. Discussion on the impact of large commercial airplane to nuclear power plant[J]. Nuclear Safety, 2010(3):1-12. doi: 10.3969/j.issn.1672-5360.2010.03.001
    [5] Luther W, Müller W C. FDS simulation of the fuel fireball from a hypothetical commercial airliner crash on a generic nuclear power plant[J]. Nuclear Engineering and Design, 2009, 239(10):2056-2069. doi: 10.1016/j.nucengdes.2009.04.018
    [6] Nachtsheim W, Stangenberg F. Selected results of Meppen slab tests-state of interpretation, comparison with computational investigations[C]//Proceedings of the 7th International Conference on Structural Mechanics in Reactor Technology. Chicago, 1983: 379-386.
    [7] Rüdiger E, Riech H. Experimental and theoretical investigations on the impact of deformable missiles onto reinforced concrete slabs[C]//Proceedings of the 7th International Conference on Structural Mechanics in Reactor Technology. Chicago, 1983: 387-394.
    [8] Herrmann N, Kreuser K, Stempniewski L. An experimental approach to determine load-functions for the impact of fluid-filled projectiles[C]//Proceedings of the 76th Shock and Vibration Symposium. Destin, Florida, 2005.
    [9] Lastunen A, Hakola I, Jarvinen E, et al. Impact test facility[C]//Proceedings of the 19th International Conference on Structural Mechanics in Reactor Technology. Toronto, 2007: 1-8.
    [10] Saarenheimo A, Hakola I, Kaernae T, et al. Numerical and experimental studies on impact loaded concrete structures[C]//Proceedings of the 14th International Conference on Nuclear Engineering. Miami, 2006: 249-261.
    [11] Kuutti J, Lastunen A. Studies of medium scale non-axisymmetric missile impacts[C]//Proceedings of the 20th International Conference on Structural Mechanics in Reactor Technology. Finland, 2009: 1-9.
    [12] Silde A, Hostikka S, Kankkunen A, et al. Experimental and numerical studies of liquid dispersal from a soft projectile impacting a wall[C]//Proceedings of the 19th International Conference on Structural Mechanics in Reactor Technology. Toronto, 2007: 1-8.
    [13] Tarallo F, Rambach J M, Bourasseau N, et al. VTT IMPACT program-first phase: lessons gained by IRSN[C]//Proceedings of the 20th International Conference on Structural Mechanics in Reactor Technology. Helsinki, 2009: 1-10.
    [14] Mizuno J, Koshika N, Morikawa H, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact Part 1: Test program and results[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, 2005: 2566-2579.
    [15] Riedel W, Nöldgena M, Straβburger E, et al. Local damage to ultra high performance concrete structures caused by an impact of aircraft engine missiles[J]. Nuclear Engineering and Design, 2010, 240(10):2633-2642. doi: 10.1016/j.nucengdes.2010.07.036
    [16] Pontiroli C, Rouquand A, Daudeville L, et al. Soft projectile impacts analysis on thin reinforced concrete slabs: Tests, modeling and simulations[J]. European Journal of Environmental and Civil Engineering, 2012, 16(9):1058-1073. doi: 10.1080/19648189.2012.699745
    [17] Sugano T, Tsubota H, Kasai Y, et al. Full-scale aircraft impact test for evaluation of impact force[J]. Nuclear Engineering and Design, 1993, 140(3):373-385. http://cn.bing.com/academic/profile?id=7bb5320c75fdbeb993fa70e8c311e39e&encoded=0&v=paper_preview&mkt=zh-cn
    [18] Sugano T, Tsubota H, Kasai Y, et al. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles Part 1: Test program, method and results[J]. Nuclear Engineering and Design, 1993, 140(3):387-405. http://cn.bing.com/academic/profile?id=65ec41c0ed99ad70f44824c2c9114ce9&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Sugano T, Tsubota H, Kasai Y, et al. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles Part 2: Evaluation of test results[J]. Nuclear Engineering and Design, 1993, 140(3):407-423. http://cn.bing.com/academic/profile?id=a51a805b71a8ce344542a814e9628403&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Hornyik K. Analytic modeling of the impact of soft missiles on protective walls[C]//Proceedings of the 4th International Conference on Structural Mechanics in Reactor Technology. San Francisco, 1977: 1-12.
    [21] Bahar L Y, Rice J S. Simplified derivation of the reaction-time history in aircraft impact on a nuclear power plant[J]. Nuclear Engineering and Design, 1978, 49(3):263-268. http://cn.bing.com/academic/profile?id=ce78e6d81e05d0d969ea9a340dff7934&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Abbas H, Paul D K, Godbole P N, et al. Soft missile impact on rigid targets[J]. International Journal of Impact Engineering, 1995, 16(5/6):727-737. http://cn.bing.com/academic/profile?id=ca890378a370d04608c5b3532afed697&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Wolf J P, Bucher K M, Skrikerud P E. Response of equipment to aircraft impact[J]. Nuclear Engineering and Design, 1978, 47(1):169-193. http://cn.bing.com/academic/profile?id=c4774add365b1504ed097625fe3c3b6d&encoded=0&v=paper_preview&mkt=zh-cn
    [24] 王远功, 余爱萍.飞机撞击核反应堆安全壳荷载-时间曲线的确定[J].核科学与工程, 1991, 11(3):208-215. http://www.cqvip.com/qk/95742X/199103/511680.html

    Wang Yuangong, Yu Aiping. The determination of load-time curve for a reactor containment which undergoes the impact of an airplane[J]. Chinese Journal of Nuclear Science and Engineering, 1993, 11(3):208-215. http://www.cqvip.com/qk/95742X/199103/511680.html
    [25] Drittler K, Gruner P. Calculation of the total force acting upon a rigid wall by projectiles[J]. Nuclear Engineering and Design, 1976, 37(2):231-244. http://cn.bing.com/academic/profile?id=ebbc9b1f73e62e7da0460c8e1b0318c2&encoded=0&v=paper_preview&mkt=zh-cn
    [26] Krutzik N J. Reduction of the dynamic response by aircraft crash on building structures[J]. Nuclear Engineering and Design, 1988, 110(2):191-200. doi: 10.1016-0029-5493(88)90022-2/
    [27] Saarenheimo A, Calonius K, Tuomala M, et al. Soft missile impact on shear reinforced concrete wall[J]. Journal of Disaster Research, 2010, 5(4):426-436. doi: 10.20965/jdr.2010.p0426
    [28] Martina O, Centrob V, Schwoertzigb T. Finite element analysis on the Meppen-Ⅱ-4 slab test[J]. Nuclear Engineering and Design, 2012, 247(6):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=186120bb3b03ff71ca779668e38015e6
    [29] Martina O, Centrob V, Schwoertzigb T. Finite element analysis on the VTT-IRSN flexural failure test[J]. Nuclear Engineering and Design, 2012, 252(12): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=233c9321263b3dd319eb276fd276a792
    [30] Mizuno J, Koshika N, Morikawa H, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact Part 2: Simulation analyses of scale model impact tests[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, 2005: 2580-2590.
    [31] Mizuno J, Koshika N, Tanaka E, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact Part 3: analyses of full-scale aircraft impact[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, 2005: 2591-2603.
    [32] Abbas H, Paul D K, Godbole P N, et al. Aircraft crash upon outer containment of nuclear power plant[J]. Nuclear Engineering and Design, 1996, 160(1/2):13-50. http://cn.bing.com/academic/profile?id=f04883f26aeb9b09b71c2bac7d3edaf8&encoded=0&v=paper_preview&mkt=zh-cn
    [33] Frano L R, Forasassi G. Preliminary evaluation of aircraft impact on a near term nuclear power plant[C]//International Conference of Nuclear Energy for New Europe. Slovenia, 2009.
    [34] Kukreja M. Damage evaluation of 500 MW Indian pressurized heavy water reactor nuclear containment for aircraft impact[J]. Nuclear Engineering and Design, 2005, 235(17/18/19):1807-1817. http://cn.bing.com/academic/profile?id=892c15191788dcce6c4661af80917d33&encoded=0&v=paper_preview&mkt=zh-cn
    [35] Iqbal M A, Rai S, Sadique M R, et al. Numerical simulation of aircraft crash on nuclear containment structure[J]. Nuclear Engineering and Design, 2012, 243(2):321-335. http://cn.bing.com/academic/profile?id=6565a640c12e8df44440dabc603d463e&encoded=0&v=paper_preview&mkt=zh-cn
    [36] Sadique M R, Iqbal M A, Bhargava P. Nuclear containment structure subjected to commercial and fighter aircraft crash[J]. Nuclear Engineering and Design, 2013, 260(7):30-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0993da91c959f1809f1b80aaf37e9558
    [37] Dundulis G, Kulak R F, Marchertas A, et al. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash[J]. Nuclear Engineering and Design, 2007, 237(14):1503-1512. doi: 10.1016/j.nucengdes.2007.01.007
    [38] 左家红.秦山核电厂安全壳在飞机撞击下的非线性分析[J].核科学与工程, 1992, 12(1):35-42. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXY199201004.htm

    Zuo Jiahong. Nonlinear analysis of Qinshan NPP containment under missile impact[J]. Chinese Journal of Nuclear Science and Engineering, 1992, 12(1):35-42. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXY199201004.htm
    [39] 李笑天, 何树延.飞机撞击核反应堆安全壳的动力学分析[J].核动力工程, 2004, 25(5):426-429. doi: 10.3969/j.issn.0258-0926.2004.05.010

    Li Xiaotian, He Shuyan. Dynamic analysis of reactor containment subjected to aircraft impact loading[J]. Nuclear Power Engineering, 2004, 25(5):426-429. doi: 10.3969/j.issn.0258-0926.2004.05.010
    [40] 徐征宇.飞机撞击核岛屏蔽厂房的有限元分析[J].核科学与工程, 2010, 30(S1):309-313. http://epub.cnki.net/grid2008/detail.aspx?filename=JZJB20190222000&dbname=DKFX2019

    Xu Zhengyu. Finite element analysis for aircraft impact to shield building[J]. Chinese Journal of Nuclear Science and Engineering, 2010, 30(S1):309-313. http://epub.cnki.net/grid2008/detail.aspx?filename=JZJB20190222000&dbname=DKFX2019
    [41] Arros J, Doumbalski N. Analysis of aircraft impact to concrete structures[J]. Nuclear Engineering and Design, 2007, 237(12/13):1241-1249. http://cn.bing.com/academic/profile?id=0a280086e1c008b2dc88dd7ca514bd13&encoded=0&v=paper_preview&mkt=zh-cn
    [42] Wierzbicki T, Teng X. How the airplane wing cut through the exterior columns of the World Trade Center[J]. International Journal of Impact Engineering, 2003, 28(6):601-625. doi: 10.1016/S0734-743X(02)00106-9
    [43] Karim M R, Fatt M S. Impact of the Boeing 767 aircraft into the World Trade Center[J]. Journal of Engineering Mechanics, 2005, 131(10):1066-1072. doi: 10.1061/(ASCE)0733-9399(2005)131:10(1066)
    [44] 郑文凯.大型商用飞机撞击核电站屏蔽厂房的荷载研究[D].北京: 清华大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10003-1014020907.htm
    [45] Kirkpatrick S W, Bocchieri R T, MacNeill R A, et al. Modeling methodologies for assessment of aircraft impact damage to the World Trade Center Towers[C]//Proceedings of the 9th International LS-DYNA Users Conference. Dearborn, 2006: 53-68.
    [46] Hoffmann C, Popescu V, Kilic S, et al. Modelling, simulation and visualization: The pentagon on September 11th[J]. Computing in Science and Engineering, 2004, 6(1):52-60. doi: 10.1109/MCISE.2004.1255821
    [47] Rosen P, Popescu V, Hoffmann C, et al. A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(4):937-947. doi: 10.1109/TVCG.2008.41
    [48] Popescu V, Hoffmann C. General-purpose visualization of large-scale finite element analysis simulations[C]//Proceedings of Interservice/Industry Training, Simulation and Education Conference. Orlando, 2008: 1-10.
    [49] Jin B M, Kim Y J, Lee Y S, et al. Preliminary studies on vibration characteristics of nuclear power plant crashed by large civil aircraft[C]//Proceedings of 15th World Conference on Earthquake Engineering. Lisbon, 2012.
    [50] Kostov M, Henkel F O, Andonov A. Safety assessment of A92 reactor building for large commercial aircraft crash[C]//The 21th International Conference on Structural Mechanics in Reactor Technology. New Delhi, 2011: 967-974.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  7205
  • HTML全文浏览量:  3392
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-15
  • 修回日期:  2014-11-25
  • 刊出日期:  2016-03-25

目录

    /

    返回文章
    返回