弹丸入水特性的SPH计算模拟

周杰 徐胜利

周杰, 徐胜利. 弹丸入水特性的SPH计算模拟[J]. 爆炸与冲击, 2016, 36(3): 326-332. doi: 10.11883/1001-1455(2016)03-0326-07
引用本文: 周杰, 徐胜利. 弹丸入水特性的SPH计算模拟[J]. 爆炸与冲击, 2016, 36(3): 326-332. doi: 10.11883/1001-1455(2016)03-0326-07
Zhou Jie, Xu Shengli. SPH simulation on the behaviors of projectile water entry[J]. Explosion And Shock Waves, 2016, 36(3): 326-332. doi: 10.11883/1001-1455(2016)03-0326-07
Citation: Zhou Jie, Xu Shengli. SPH simulation on the behaviors of projectile water entry[J]. Explosion And Shock Waves, 2016, 36(3): 326-332. doi: 10.11883/1001-1455(2016)03-0326-07

弹丸入水特性的SPH计算模拟

doi: 10.11883/1001-1455(2016)03-0326-07
基金项目: 

中国博士后科学基金面上项目 2015M581081

详细信息
    作者简介:

    周杰(1986-),男,博士,Beijihu1986@163.com

  • 中图分类号: O352

SPH simulation on the behaviors of projectile water entry

  • 摘要: 应用SPH方法研究弹丸入水过程中的动力学特征。利用拉格朗日形式的N-S方程自编SPH程序,建立弹丸入水的计算模型,赋予相应的材料参数及状态方程,研究弹丸外形、入水速度和角度等因素对入水过程的影响。模拟结果表明:空化泡的形态及发展规律主要由弹丸的运动姿态决定;弹道越稳定,阻力因数就越小,弹丸的存速就越大。SPH方法具有较强的自适应性,适用于研究弹丸入水的流固耦合问题。
  • 图  1  弹丸外形及入水示意图

    Figure  1.  Schematic diagram of the projectile shape and projectile entry into the water

    2a  尖头弹丸入水的空化泡形状发展(θ=90°)

    2a.  Shape formation of cavitation bubble during the cuspidal projectile entry into the water (θ=90°)

    2b  尖头弹丸入水的空化泡形状发展(θ=60°)

    2b.  Shape formation of cavitation bubble during the cuspidal projectile entry into the water (θ=60°)

    2c  尖头弹丸入水的空化泡形状发展(θ=30°)

    2c.  Shape formation of cavitation bubble during the cuspidal projectile entry into the water (θ=30°)

    图  3  尖头弹丸的入水轨迹(v0=1200m/s,θ=60°)

    Figure  3.  Trajectory of cuspidal projectile entry into the water (v0=1200m/s, θ=60°)

    图  4  平头弹入水运动轨迹(v0=1200m/s,θ=90°)

    Figure  4.  Trajectory of blunt projectile entry into the water (v0=1200m/s, θ=90°)

    5a  弹丸入水过程中的弹道轨迹(θ=90°)

    5a.  Ballistic trajectory of projectile during the process of entry into the water (θ=90°)

    5b  弹丸入水过程中的弹道轨迹(θ=60°)

    5b.  Ballistic trajectory of projectile during the process of entry into the water (θ=60°)

    5c  弹丸入水过程中的弹道轨迹(θ=30°)

    5c.  Ballistic trajectory of projectile during the process of entry into the water (θ=30°)

    图  6  弹丸入水的速度变化规律

    Figure  6.  Profile of the velocity variation during the projectile entry into the water

    图  7  弹丸阻力因数随时间的变化规律

    Figure  7.  Variation of the projectile's drag coefficient with time

    表  1  Mie-Grüneisen状态方程的材料参数

    Table  1.   Material parameters of Mie-Grüneisen equation of state

    ρ0/(kg·m-3) c/(m·s-1) γ0 S1 S2 S3 a
    1000 1480 0.5 2.56 1.986 1.227 0
    下载: 导出CSV
  • [1] Putilin S I. Some features of dynamics of supercavitating models[J]. Applied Hydromechanics, 2000, 2(74):65-74.
    [2] Knapp R T, Daily J W, Hammitt F G. Cavitation[M]. NewYork: McGraw-Hill, 1970.
    [3] Franc J-P, Michel J-M. Fundamentals of cavitation[M]. The Netherlands: Kluwer Academic Publishers, 2004
    [4] 曹伟, 王聪, 魏英杰, 等.自然超空泡形态特性的射弹试验研究[J].工程力学, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031

    Cao Wei, Wang Cong, Wei Yingjie, et al. High-speed projectile experimental investigations on the characteristics of natural supercavitation[J]. Engineering Mechanics, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031
    [5] 易文俊, 王中原, 熊天红, 等.水下高速射弹超空泡减阻特性研究[J].弹道学报, 2008, 20(4):1-4. http://d.old.wanfangdata.com.cn/Periodical/ddxb200804001

    Yi Wenjun, Wang Zhongyuan, Xiong Tianhong, et al. Research on drag reduction characteristics of a underwater high-speed supercavitation projectile[J]. Journal of Ballistics, 2008, 20(4): 1-4. http://d.old.wanfangdata.com.cn/Periodical/ddxb200804001
    [6] 安伟光, 蒋运华, 安海.运动体高速入水非定常过程研究[J].工程力学, 2011, 28(3):251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103039.htm

    An Weiguang, Jiang Yunhua, An Hai. The unsteady water entry process study of high-speed vehicle[J]. Engineering Mechanics, 2011, 28(3):251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103039.htm
    [7] Chen J K, Beraun J E. A generalized smoothed particle hydrodynamic method for nonlinear dynamic problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(1):225-239.
    [8] Cleary P W, Prakash M, Ha J. Novel applications of smoothed particle hydrodynamics (SPH) in metal forming[J]. Journal of Materials Processing Technology, 2006, 177(1):41-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2912c16d0874a46a1bd798037e48ad58
    [9] Shin Y S, Lee M, Lam K Y, et al. Modeling mitigation effects of watershield on shock wave[J]. Shock and Vibration, 1998, 5(4):225-234. doi: 10.1155/1998/782032
    [10] Libersky L D, Petschek A G. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1):67-75.
    [11] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82(12):1013-1024. doi: 10.1086-112164/
    [12] Liu G R, Liu M B. Smoothed particle hydrodynamics: A meshfree particle method[M]. German: Springer Berlin /Heidelberg, 2004:1-491.
    [13] Monaghan J J. Particle methods for hydrodynamic[J]. Computer Physics Report, 1985, 3(2):71-124. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201512013
    [14] Monaghan J J. On the problem of penetration in particle menthods[J]. Journal of Computer Physics, 1989, 82(1):1-15.
    [15] Monaghan J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8):1703-1759. doi: 10.1088/0034-4885/68/8/R01
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  6630
  • HTML全文浏览量:  3012
  • PDF下载量:  774
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-22
  • 修回日期:  2014-12-05
  • 刊出日期:  2016-05-25

目录

    /

    返回文章
    返回