• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

弹丸入水特性的SPH计算模拟

周杰 徐胜利

龚敏, 王华, 文斌. 岩石深孔爆破对邻近煤层的动应力作用[J]. 爆炸与冲击, 2012, 32(2): 196-202. doi: 10.11883/1001-1455(2012)02-0196-07
引用本文: 周杰, 徐胜利. 弹丸入水特性的SPH计算模拟[J]. 爆炸与冲击, 2016, 36(3): 326-332. doi: 10.11883/1001-1455(2016)03-0326-07
GONG Min, WANG Hua, WEN Bin. Dynamicstressinadjacentcoalseamsinducedbydeep-holeblastinginrock[J]. Explosion And Shock Waves, 2012, 32(2): 196-202. doi: 10.11883/1001-1455(2012)02-0196-07
Citation: Zhou Jie, Xu Shengli. SPH simulation on the behaviors of projectile water entry[J]. Explosion And Shock Waves, 2016, 36(3): 326-332. doi: 10.11883/1001-1455(2016)03-0326-07

弹丸入水特性的SPH计算模拟

doi: 10.11883/1001-1455(2016)03-0326-07
基金项目: 

中国博士后科学基金面上项目 2015M581081

详细信息
    作者简介:

    周杰(1986-),男,博士,Beijihu1986@163.com

  • 中图分类号: O352

SPH simulation on the behaviors of projectile water entry

  • 摘要: 应用SPH方法研究弹丸入水过程中的动力学特征。利用拉格朗日形式的N-S方程自编SPH程序,建立弹丸入水的计算模型,赋予相应的材料参数及状态方程,研究弹丸外形、入水速度和角度等因素对入水过程的影响。模拟结果表明:空化泡的形态及发展规律主要由弹丸的运动姿态决定;弹道越稳定,阻力因数就越小,弹丸的存速就越大。SPH方法具有较强的自适应性,适用于研究弹丸入水的流固耦合问题。
  • 图  1  弹丸外形及入水示意图

    Figure  1.  Schematic diagram of the projectile shape and projectile entry into the water

    2a  尖头弹丸入水的空化泡形状发展(θ=90°)

    2a.  Shape formation of cavitation bubble during the cuspidal projectile entry into the water (θ=90°)

    2b  尖头弹丸入水的空化泡形状发展(θ=60°)

    2b.  Shape formation of cavitation bubble during the cuspidal projectile entry into the water (θ=60°)

    2c  尖头弹丸入水的空化泡形状发展(θ=30°)

    2c.  Shape formation of cavitation bubble during the cuspidal projectile entry into the water (θ=30°)

    图  3  尖头弹丸的入水轨迹(v0=1200m/s,θ=60°)

    Figure  3.  Trajectory of cuspidal projectile entry into the water (v0=1200m/s, θ=60°)

    图  4  平头弹入水运动轨迹(v0=1200m/s,θ=90°)

    Figure  4.  Trajectory of blunt projectile entry into the water (v0=1200m/s, θ=90°)

    5a  弹丸入水过程中的弹道轨迹(θ=90°)

    5a.  Ballistic trajectory of projectile during the process of entry into the water (θ=90°)

    5b  弹丸入水过程中的弹道轨迹(θ=60°)

    5b.  Ballistic trajectory of projectile during the process of entry into the water (θ=60°)

    5c  弹丸入水过程中的弹道轨迹(θ=30°)

    5c.  Ballistic trajectory of projectile during the process of entry into the water (θ=30°)

    图  6  弹丸入水的速度变化规律

    Figure  6.  Profile of the velocity variation during the projectile entry into the water

    图  7  弹丸阻力因数随时间的变化规律

    Figure  7.  Variation of the projectile's drag coefficient with time

    表  1  Mie-Grüneisen状态方程的材料参数

    Table  1.   Material parameters of Mie-Grüneisen equation of state

    ρ0/(kg·m-3) c/(m·s-1) γ0 S1 S2 S3 a
    1000 1480 0.5 2.56 1.986 1.227 0
    下载: 导出CSV
  • [1] Putilin S I. Some features of dynamics of supercavitating models[J]. Applied Hydromechanics, 2000, 2(74):65-74.
    [2] Knapp R T, Daily J W, Hammitt F G. Cavitation[M]. NewYork: McGraw-Hill, 1970.
    [3] Franc J-P, Michel J-M. Fundamentals of cavitation[M]. The Netherlands: Kluwer Academic Publishers, 2004
    [4] 曹伟, 王聪, 魏英杰, 等.自然超空泡形态特性的射弹试验研究[J].工程力学, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031

    Cao Wei, Wang Cong, Wei Yingjie, et al. High-speed projectile experimental investigations on the characteristics of natural supercavitation[J]. Engineering Mechanics, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031
    [5] 易文俊, 王中原, 熊天红, 等.水下高速射弹超空泡减阻特性研究[J].弹道学报, 2008, 20(4):1-4. http://d.old.wanfangdata.com.cn/Periodical/ddxb200804001

    Yi Wenjun, Wang Zhongyuan, Xiong Tianhong, et al. Research on drag reduction characteristics of a underwater high-speed supercavitation projectile[J]. Journal of Ballistics, 2008, 20(4): 1-4. http://d.old.wanfangdata.com.cn/Periodical/ddxb200804001
    [6] 安伟光, 蒋运华, 安海.运动体高速入水非定常过程研究[J].工程力学, 2011, 28(3):251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103039.htm

    An Weiguang, Jiang Yunhua, An Hai. The unsteady water entry process study of high-speed vehicle[J]. Engineering Mechanics, 2011, 28(3):251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103039.htm
    [7] Chen J K, Beraun J E. A generalized smoothed particle hydrodynamic method for nonlinear dynamic problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(1):225-239.
    [8] Cleary P W, Prakash M, Ha J. Novel applications of smoothed particle hydrodynamics (SPH) in metal forming[J]. Journal of Materials Processing Technology, 2006, 177(1):41-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2912c16d0874a46a1bd798037e48ad58
    [9] Shin Y S, Lee M, Lam K Y, et al. Modeling mitigation effects of watershield on shock wave[J]. Shock and Vibration, 1998, 5(4):225-234. doi: 10.1155/1998/782032
    [10] Libersky L D, Petschek A G. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1):67-75.
    [11] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82(12):1013-1024. doi: 10.1086-112164/
    [12] Liu G R, Liu M B. Smoothed particle hydrodynamics: A meshfree particle method[M]. German: Springer Berlin /Heidelberg, 2004:1-491.
    [13] Monaghan J J. Particle methods for hydrodynamic[J]. Computer Physics Report, 1985, 3(2):71-124. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201512013
    [14] Monaghan J J. On the problem of penetration in particle menthods[J]. Journal of Computer Physics, 1989, 82(1):1-15.
    [15] Monaghan J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8):1703-1759. doi: 10.1088/0034-4885/68/8/R01
  • 加载中
推荐阅读
考虑药包爆破动-静时序作用的漏斗形成机理
康普林 等, 爆炸与冲击, 2025
考虑裂隙粗糙度的岩体单轴压缩动态损伤模型
刘红岩 等, 爆炸与冲击, 2025
考虑动态拉压比影响的岩石损伤本构模型
胡学龙 等, 爆炸与冲击, 2025
考虑岩体破坏分区的岩石爆破爆炸荷载历程研究
孙鹏昌 等, 爆炸与冲击, 2024
岩石爆破损伤演化与动力响应的空孔效应
李涛 等, 高压物理学报, 2025
煤矿深部开采地应力分布规律及影响因素
李琳琳 等, 黑龙江科技大学学报, 2025
采动覆岩动态运移对地表沉陷的影响
李佳臻 等, 黑龙江科技大学学报, 2025
Modified chitosan with different phenolic acids: characterization, physicochemical properties, and biological activity
Zhang, Bingjie et al., FOOD CHEMISTRY, 2024
Seepage characteristics of coal under complex mining stress environment conditions
ENERGY & FUELS, 2024
Study on internal rise law of fracture water pressure and progressive fracture mechanism of rock mass under blasting mpact
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY
Powered by
图(11) / 表(1)
计量
  • 文章访问数:  6838
  • HTML全文浏览量:  3073
  • PDF下载量:  788
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-22
  • 修回日期:  2014-12-05
  • 刊出日期:  2016-05-25

目录

    /

    返回文章
    返回