Dynamic response of functionally graded honeycomb sandwich plates under blast loading
-
摘要: 利用弹道冲击摆锤系统对分层梯度蜂窝夹芯板在爆炸荷载下的动力响应进行了实验研究,分析了梯度蜂窝夹芯板在爆炸荷载作用下的变形失效模式,并与传统非梯度蜂窝夹芯板的抗爆性能做了对比。通过一维应力波理论,分析了应力波在梯度芯层中的传播规律。应力波透射系数在梯度试件中比非梯度芯层中小,而且相对密度递减的芯层组合有最小的应力波透射系数。综合考虑结构变形失效模式,后面板挠度,芯层压缩量以及应力波传播特点得到:分层梯度蜂窝夹芯板的抗爆性能明显优于传统的非梯度夹芯板,在所研究的荷载范围内,芯层相对密度从大到小排列试件的抗爆性能相对较好。Abstract: In this paper we report on the tests that investigate the blast resistance of graded sandwich plates. The deformation model, the back-face-sheet deflections and the core compressions have been compared with the test results obtained from tests done on structures with ungraded core layers. The stress transfer characteristics are analyzed based on the one dimensional stress wave theory, indicating that the stress wave transferred factor is smaller in the graded core layers and it is smallest in the relative density-tapered core arrangement specimen. By considering the deformation model, back-face-sheet deflections, core compressions and stress transfer characteristics, the blast resistance of the graded sandwich plates is found to be better than that of the ungraded ones, and in the present loading conditions, the relative density-tapered core arrangement from the front sheet to the back sheet is found to have the best blast resistance.
-
表 1 试件分组与实验结果
Table 1. Specimen configurations and blast loading results
试件 芯层排列 W/g R/mm I/(N·s) γ/mm δ/mm C1 C2 C3 G1 L-M-S 20 200 20.27 22.1 6.31 6.21 0.52 G2 L-S-M 20 200 20.06 17.4 5.91 3.74 1.93 G3 M-L-S 20 200 20.36 19.1 5.40 5.30 0.58 G4 M-S-L 20 200 20.32 18.6 5.79 1.50 4.05 G5 S-L-M 20 200 20.23 17.6 4.31 5.79 1.45 G6 S-M-L 20 200 20.01 18.1 5.53 4.67 4.41 G6 S-M-L 25 250 20.21 22.6 5.42 1.22 4.04 G6 S-M-L 30 300 20.54 25.3 5.68 5.86 6.00 UG1 S 20 120 20.19 34.6 贯穿 UG1 S 20 150 20.03 21.7 贯穿 UG1 S 20 200 20.14 20.6 7.70 UG2 M 20 200 15.65 18.3 8.55 UG2 M 30 300 19.25 28.6 10.88 UG2 M 25 250 18.23 26.7 9.40 UG3 L 20 200 15.31 24.0 13.60 UG3 L 25 250 16.41 26.6 13.50 UG3 L 30 300 19.03 26.1 13.00 表 2 材料力学性能参数
Table 2. Mechanical properties of aluminum alloys
材料 σ0.2/MPa E/GPa ρs/(g·cm-3) ν AL5052 325 70 2.7 0.3 AL1200 163 70 2.7 0.3 表 3 梯度试件芯层变形区域面积对比(W=20g,R=200mm)
Table 3. Comparison of the deformation area of the core layers (W=20g, R=200mm)
试件 芯层排列 S1/mm2 S2/mm2 C1 C2 C3 C1 C2 C3 G1 L-M-S 254.3 78.5 12.7 132.7 28.3 0 G2 L-S-M 213.7 63.6 12.6 86.5 0 0 G3 M-L-S 176.6 132.7 7.1 50.2 28.3 0 G4 M-S-L 201.0 50.2 78.5 63.6 0 7.1 G5 S-L-M 132.7 153.9 15.9 0 28.3 0 G6 S-M-L 103.8 38.5 201.0 33.2 5.0 0 -
[1] Gibson L J, Ashby M F. Cellular solids:structure and properties[M]. 2nd ed. UK: Cambridge University Press, 1997. [2] Xu S, Beynon J H, Ruan D, et al. Strength enhancement of aluminium honeycombs caused by entrapped air under dynamic out-of-plane compression[J]. International Journal of Impact Engineering, 2012, 47(4):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b737c215a5c95f04f084612dbbe8cc31 [3] Zhao H, Gary G. Crushing behavior of aluminum honeycombs under impact loading[J]. International Journal of Impact Engineering, 1998, 21(10):827-836. doi: 10.1016/S0734-743X(98)00034-7 [4] Zhang X, Zhang H, Wen Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations[J]. International Journal of Impact Engineering, 2014, 66:48-59. doi: 10.1016/j.ijimpeng.2013.12.009 [5] Liang C-C, Yang M-F, Wu P-W. Optimum desing of metallic corrugated core sandwich panals subjected to blast loads[J]. Ocean Engineering, 2001, 28(7):825-861. doi: 10.1016/S0029-8018(00)00034-2 [6] McShane G J, Radford D D, Deshhpand V S, et al. The response of clamped sandwich plates subjected to shock loading[J]. European Journal of Mechanics:A: Solids, 2006, 25:215-129. doi: 10.1016/j.euromechsol.2005.08.001 [7] Etemadi E, Khatibi A A, Takaffoli M. 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact[J].Composite Structures, 2009, 89(1):28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c779283517114a83e1dcbf0c191bfd52 [8] Cui L, Kiernan S, Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials[J]. Material Science Engineering A: Structural Materials Properties Microstructure and Processing, 2009, 507(1/2):215-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1025aa7dec927f9329dc64fdf4c8c9b2 [9] Gardner N, Wang E, Shukla A. Performance of functionally graded sandwich composite beams under shock wave loading[J]. Composite Structures, 2012, 94(5):1755-1770. doi: 10.1016/j.compstruct.2011.12.006 [10] Liu X, Tian X, Lu T J, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores[J]. Composite Structures, 2012, 94(8):2485-2493. doi: 10.1016/j.compstruct.2012.02.029 [11] Liu X, Tian X, Lu T, et al. Sandwich plates with functionally graded metallic foam cores subjected to air blast loading[J].International Journal of Mechanical Sciences, 2014, 84:61-72. doi: 10.1016/j.ijmecsci.2014.03.021 [12] Li Y, Ramesh K T, Chin E S C. Dynamic characterization of layered and graded structures under impulsive loading[J].International Journal of Solids and Structures, 2001, 38(34/35):6045-6061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=848d4eafbd2d38bfbb11723d8a0b89f7 [13] Apetre N A, Sankar B V, Ambur D R. Low-velocity impact response of sandwich beams with functionally graded core[J]. International Journal of Solids and Structures, 2006, 43(9):2479-2496. doi: 10.1016/j.ijsolstr.2005.06.003 [14] Zhang L, Hebert R, Wright J T, et al. Dynamic response of corrugated sandwich steel plates with graded cores[J]. International Journal of Impact Engineering, 2014, 65:185-194. doi: 10.1016/j.ijimpeng.2013.11.011 [15] 敬霖, 王志华, 赵隆茂.爆炸荷载作用下结构冲量的测量[J].实验力学, 2009, 24(2):151-156. http://d.old.wanfangdata.com.cn/Periodical/sylx200902010Jing Lin, Wang Zhihua, Zhao Longmao. Measurement of impulse acted on a structure subjected to blast loading[J]. Journal of Experimental Mechanics, 2009, 24(2):151-156. http://d.old.wanfangdata.com.cn/Periodical/sylx200902010 [16] Nurick G N, Langdon G S, Chi Y, et al. Behaviour of sandwich panels subjected to intense air blast: Part 1: Experiments[J]. Composite Structures, 2009, 91:433-441. doi: 10.1016/j.compstruct.2009.04.009 [17] Zhu F, Zhao L, Lu G, et al. Deformation and failure of blast-loaded metallic sandwich panels- Experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8):937-951. doi: 10.1016/j.ijimpeng.2007.11.003 [18] Makris A, Frost D L, Nerenberg J, et al. Attenuation of a blast wave with a cellular material[C]//Proceedings of the 20th International Symposium on Shock Waves (ISSW/20). Pasadena, CA, USA, 1996, 2: 1387-1392. [19] Bruck H A. A one-dimensional model for designing functionally graded materials to manage stress waves[J]. International Journal of Solids and Structures, 2000, 37(44):6383-6395. doi: 10.1016/S0020-7683(99)00236-X [20] Samadhiya R, Mukherjee A, Schmauder S. Characterization of discretely graded materials using acoustic wave propagation[J]. Computation Materials Science, 2006, 37(1/2):20-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01a4baee81dc96c11d1744558ed8b69e [21] 宋博, 胡时胜, 王礼立.分层材料的不同排列次序对透射冲击波强度的影响[J].兵工学报, 2000, 21(3):272-274. doi: 10.3321/j.issn:1000-1093.2000.03.021Song Buo, Hu Shisheng, Wang Lili. Influnence on the transmitted intensity of shock wave through different tactic orders of layered materials[J]. Acta Armamentarii, 2000, 21(3):272-274. doi: 10.3321/j.issn:1000-1093.2000.03.021