Experimental study on explosion effect in a closed single rectangular cavity
-
摘要: 为了获得在典型空腔内发生爆炸后,结构壁面上爆炸载荷的分布规律和空腔结构的破坏形式,以国防工事和人防工事的等级设计规范为依据,设计了长方体单腔室空腔模型,并对该模型进行了药量逐渐递增直至可使结构破坏的内爆炸实验。用压力传感器和加速度传感器分别记录了单腔室壁面上爆炸载荷的压力时程曲线和结构壁面振动的加速度时程曲线,分析了壁面上爆炸载荷的分布规律以及模型结构的破坏形式,并将首个峰值的实测数据与理论计算和数值模拟结果进行了对比,探讨了3种研究方法产生误差的原因。Abstract: According to the design specifications of national defense works and human defense works, a closed single rectangular cavity model was developed to obtain the explosion load distribution at the walls of typical cavities and the corresponding destruction forms resulted from the explosion inside the cavities. The developed cavity model was applied to carry out internal explosion experiments, in which the mass of the TNT charge was increased gradually until the cavity model could be damaged. Pressure and acceleration sensors were used to record the explosion pressure-time curves and the vibration acceleration-time curves at the cavity walls, respectively. And the explosion load distributions at the cavity walls and the destruction form of the model structure were analyzed. The first peaks of the measured data were compared with the results of theoretical calculation and numerical simulation to discuss the cause for the errors among the three methods.
-
Key words:
- mechanics of explosion /
- explosion effect /
- internal explosion /
- typical cavity
-
表 1 结构壁面纵向钢筋参数
Table 1. Reinforcement parameters of longitudinal wall
ps, e/MPa a/m b/m c/m S/dm2 l/m F/MN f/MPa d/mm n δ k/mm 1.2 3 1.5 1.5 450 9 5.4 400 14 88 1 102 1.2 3 1.5 1.5 450 9 5.4 400 14 88 2 204 表 2 5个观测点首次反射的理论计算、数值模拟及实测结果的比较
Table 2. Comparison among theoretical calculation, numerical simulation and experimental results for the first reflection at five observation points
W/g 方法 p/MPa 观测点1 观测点2 观测点3 观测点4 观测点5 理论计算 1.059 0.164 0.441 0.135 0.135 75 数值模拟 0.752 0.103 0.304 0.094 0.091 实验平均值 1.154 0.165 0.450 0.107 0.148 理论计算 2.212 0.285 0.836 0.225 0.229 150 数值模拟 1.553 0.183 0.574 0.146 0.157 实验平均值 1.960 0.263 0.804 0.181 0.450 理论计算 3.025 0.367 1.108 0.282 0.290 200 数值模拟 2.102 0.234 0.754 0.176 0.201 实验平均值 2.104 0.336 0.556 0.346 0.759 -
[1] Wharton R K, Formby S A, Merrifield R. Air blast TNT equivalence for a range of commercial blasting explosives[J]. Journal of Hazardous Materials, 2000, 79(l/2):31-39. https://www.sciencedirect.com/science/article/pii/S0304389400001680 [2] 李国豪.工程结构抗爆动力学[M].上海:上海科学技术出版社, 1989:3-10. [3] Rigas F, Sklavounos S. Experimentally validated 3-D simulation of shock waves generated by dense explosives in confined complex geometries[J]. Journal of Hazardous Materials, 2005, 121(l/2/3):23-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c71f431d2e784f3bbc86c05fea2dd85 [4] 张亚军.爆炸流场及容器内爆流固耦合问题计算研究[D].合肥: 中国科学技术大学, 2007: 9-13. http://cdmd.cnki.com.cn/Article/CDMD-10358-2007098227.htm [5] 胡八一, 李平, 张振宇, 等.爆炸塔内壁特征点的反射压力数值模拟[J].计算力学学报, 2009, 26(4):573-578. http://d.old.wanfangdata.com.cn/Conference/7079526Hu Bayi, Li Ping, Zhang Zhenyu, et al. Numerical simulation of characteristic points reflective pressure on the inner surface of the explosion chamber[J]. Chinese Journal of Computational Mechanics, 2009, 26(4):573-578. http://d.old.wanfangdata.com.cn/Conference/7079526 [6] 朱文辉, 薛鸿陆, 刘仓理, 等.爆炸容器承受内部加载的实验研究[J].爆炸与冲击, 1995, 15(4):374-381. http://www.bzycj.cn/article/id/10600Zhu Wenhui, Xue Honglu, Liu Cangli, et al. Experimental study on the explosive chambers under internal blast loading[J]. Explosion and Shock Waves, 1995, 15(4):374-381. http://www.bzycj.cn/article/id/10600 [7] 曹玉忠, 卢泽生.抗爆容器内爆炸流场数值模拟[J].高压物理学报, 2001, 15(2):127-133. doi: 10.3969/j.issn.1000-5773.2001.02.009Cao Yuzhong, Lu Zesheng. Numerical simulations of blast flowfields in closed blast-resistance containers[J]. Chinese Journal of High Pressure Physics, 2001, 15(2):127-133. doi: 10.3969/j.issn.1000-5773.2001.02.009 [8] 王可强, 苏经宇, 王志涛.爆炸冲击波在建筑群中传播规律的数值模拟研究[J].中国安全科学学报, 2007, 17(10):121-127. doi: 10.3969/j.issn.1003-3033.2007.10.021Wang Keqiang, Su Jingyu, Wang Zhitao. Numerical simulation of propagation rules of blast shock wave in building cluster[J]. China Safety Science Journal, 2007, 17(10):121-127. doi: 10.3969/j.issn.1003-3033.2007.10.021 [9] 过镇海.钢筋混凝土原理[M].北京:清华大学出版社, 1999:26-40. [10] 宁建国, 商霖, 孙远翔.混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J].力学进展, 2006, 36(3):389-403. doi: 10.3321/j.issn:1000-0992.2006.03.006Ning Jianguo, Shang Lin, Sun Yuanxiang. The research developments of dynamic constitutive relationship for concrete[J]. Advances in Mechanics, 2006, 36(3):389-403. doi: 10.3321/j.issn:1000-0992.2006.03.006 [11] 卢国强.钢筋混凝土-钢板组合结构抗爆炸作用的试验研究与动力分析[D].上海: 同济大学, 1997: 45-48. [12] 李翼祺.爆炸力学[M].北京:科学出版社, 1992:99-107. [13] 亨利奇.爆炸动力学及其应用: 1979年版[M].熊建国, 等, 译.北京: 科学出版社, 1987: 76-83. [14] TM5-855-1, Fundamentals of protective design for conventional weapons[M].方秦, 译.南京: 工程兵工程学院, 1997: 35-42. [15] Chapman T C, Rose T A, Smith P D. Blast wave simulation using AUTODYN2D: A parametric study[J]. International Journal of Impact Engineering, 1995, 16(5):777-787. http://cn.bing.com/academic/profile?id=c587fc7b403ea0a61dd0f53dd7fa4d45&encoded=0&v=paper_preview&mkt=zh-cn [16] Baker W E, Cox P A. Explosion hazards and evaluation[M]. New York: Elsevier Publishing Company, 1983:15-18. [17] 郭志昆, 宋锋良, 刘峰, 等.扁平箱形密闭结构内爆炸的模型试验[J].解放军理工大学学报:自然科学版, 2008, 9(4):345-350. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb200804008Guo Zhikun, Song Fengliang, Liu Feng, et al. Experiment of closed flat box structure subjected to internal detonation[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2008, 9(4):345-350. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb200804008