Effect of prefabricated crack with different fillings on blasting cracks propagation
-
摘要: 为了研究充填裂隙岩石动态断裂时裂纹扩展规律,以空气、黏土和水作为有机玻璃的预制裂隙充填材料,在炮孔与预制裂隙的不同夹角、不同距离条件下,通过单发雷管加载,对3种不同裂隙充填物的有机玻璃模型进行了起爆实验。结果表明:爆炸裂纹几乎都不会越过预制裂隙;空气充填模型裂纹总数、左端翼裂纹几乎全部大于黏土和水充填模型;最长裂纹分布位置和长度与反射应力波传播方向和能量有关;空气充填模型右端翼裂纹多随角度增大而增长,黏土充填模型右端翼裂纹则表现为先增后减;爆炸裂纹扩展对充填物种类具有敏感性。Abstract: To study cracks propagation rules on filled fissured rock about dynamic fracture, air, clay and water were used as fillings of organic glass prefabricated fissures, under the condition of different angles and distances from blasthole to prefabricated fissures, the explosion experiments on three kinds of different fillings models were carried out through single detonator loading. The results show that blasting cracks almost cannot surmount prefabricated fissures; total cracks and left end wing cracks of models with filling air all most are larger than models with filling clay and water; location and length of the longest cracks are related to propagation direction and energy of reflected stress wave; right end wing cracks of most models with filling air increase with the increase of angles, but right end wing cracks of models with filling clay are first increased and then decreased; blasting cracks propagation are sensitive to filling medium type.
-
Key words:
- mechanics of explosion /
- cracks propagation /
- filled fissure /
- explosive stress wave
-
表 1 常温下4种介质波阻抗关系
Table 1. Four kinds of medium wave impedance relationship at room temperature
介质 ρ/(kg·m-3) c/(m·s-1) η/(kg·m-2·s-1) Δη/(kg·m-2·s-1) 有机玻璃 1 190 2 320 2.760 8×106 空气 1.25 340 425 2.760 375×106 黏土 1 800 1 000 1.8×106 0.960 8×106 水 998 1 497 1.494 006×106 1.266 794×106 -
[1] 张奇.应力波在节理处的传递过程[J].岩土工程学报, 1986, 8(6):99-105. doi: 10.3321/j.issn:1000-4548.1986.06.011Zhang Qi. Stress wave propagation in jointed at the delivery process[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(6):99-105. doi: 10.3321/j.issn:1000-4548.1986.06.011 [2] 丁黄平.节理裂隙岩体隧道爆破成型效果研究[D].长春: 吉林大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10183-2009093433.htm [3] 崔新壮, 陈士海, 刘德成.在裂隙岩体中传播的应力波的衰减机理[J].工程爆破, 1999, 5(1):18-21. doi: 10.3969/j.issn.1006-7051.1999.01.005Cui Xinzhuang, Chen Shihai, Liu Decheng. Attenuation mechanism of stress wave propagating in crack rock mass[J]. Engineering Blasting, 1999, 5(1):18-21. doi: 10.3969/j.issn.1006-7051.1999.01.005 [4] 杨仁树, 岳中文, 董聚才, 等.断续节理介质爆生裂纹扩展的动焦散实验研究[J].中国矿业大学学报, 2008, 37(4):467-472. doi: 10.3321/j.issn:1000-1964.2008.04.007Yang Renshu, Yue Zhongwen, Dong Jucai, et al. Dynamic caustics experiment of blasting crack propagation in discontinuous jointed material[J]. Journal of China University of Mining & Technology, 2008, 37(4):467-472. doi: 10.3321/j.issn:1000-1964.2008.04.007 [5] 岳中文.缺陷介质爆生裂纹扩展规律的动态焦散线试验研究[D].北京: 中国矿业大学(北京), 2009. http://cdmd.cnki.com.cn/Article/CDMD-11413-2009263112.htm [6] 石崇, 徐卫亚, 周家文, 等.节理面透射模型及其隔振性能研究[J].岩土力学, 2009, 30(3):729-734. doi: 10.3969/j.issn.1000-7598.2009.03.028Shi Chong, Xu Weiya, Zhou Jiawen, et al. Transmission model of joint interface and its performance of vibration isolation[J]. Rock and Soil Mechanics, 2009, 30(3):729-734. doi: 10.3969/j.issn.1000-7598.2009.03.028 [7] 刘际飞, 璩世杰.节理走向角度对爆炸应力波传播影响的试验研究[J].爆破, 2014, 31(2):57-61. doi: 10.3963/j.issn.1001-487X.2014.02.012Liu Jifei, Qu Shijie. Experimental study of influence of joint angle of strike on explosive stress wave propagation[J]. Blasting, 2014, 31(2):57-61. doi: 10.3963/j.issn.1001-487X.2014.02.012 [8] 宋小林.层状岩体爆破的层裂效应及其对顺层边坡稳定性的影响研究[D].成都: 西南交通大学, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1347415 [9] 杨仁树, 岳中文, 肖同社, 等.节理介质断裂控制爆破裂纹扩展的动焦散试验研究[J].岩石力学与工程学报, 2008, 27(2):244-250. doi: 10.3321/j.issn:1000-6915.2008.02.003Yang Renshu, Yue Zhongwen, Xiao Tongshe, et al. Dynamic caustics experiment on crack propagation of jointed medium with controlled blasting[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2):244-250. doi: 10.3321/j.issn:1000-6915.2008.02.003 [10] 张鹏, 李一博, 吴晓, 等.基于声检测的管道内检测器定位系统[J].现代科学仪器, 2011(1):45-47. http://d.old.wanfangdata.com.cn/Periodical/xdkxyq201101011Zhang Peng, Li Yi-bo, Wu Xiao, et al. Locating system of pipeline inspection gauge based on acoustic detecting[J]. Modern Scientific Instruments, 2011(1):45-47. http://d.old.wanfangdata.com.cn/Periodical/xdkxyq201101011 [11] 王文冰.层理岩石声学特性及其爆炸荷载作用下损伤特征试验研究[D].北京: 中国地质大学(北京), 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1784157 [12] 郭学彬, 张继春.爆破工程[M].北京:人民交通出版社, 2007. [13] 郭尧, 孟海利, 戚妍娟, 等.预裂缝对爆破地震波传播影响的机理研究[J].仪器仪表学报, 2010, 31(增4):17-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002725648Guo Yao, Meng Haili, Qi Yanjuan, et al. Study on mechanisms of the transmission of blasting vibration in the pre-split crack[J]. Chinese Journal of Scientific Instrument, 2010, 31(Suppl4):17-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002725648 期刊类型引用(13)
1. 王梓宇,李胜林,李黎,凌天龙,梁书锋,孙旭. 隧道爆破地震作用下燃气管道动力响应规律研究. 爆破. 2024(03): 212-221+247 . 百度学术
2. 郭映聪. 基于小波分析基坑钻爆开挖地震效应预测研究. 市政技术. 2023(02): 126-132 . 百度学术
3. 李辉,王董东,杜文康,弓煜. 安家岭煤矿爆破振速预测与安全允许距离研究. 煤炭工程. 2023(10): 156-161 . 百度学术
4. 代树红,安志奎,王晓晨,韩荣军. 露天煤矿爆破振动速度计算公式研究. 辽宁工程技术大学学报(自然科学版). 2022(01): 41-46 . 百度学术
5. 宋宏坤. 基于爆破振速衰减规律的爆破振动控制技术. 中外公路. 2022(02): 188-193 . 百度学术
6. 贾海鹏,刘殿书,方真刚,田帅康. 地铁隧道钻爆法施工中敏感区间及安全药量确定. 北京理工大学学报. 2021(01): 23-29 . 百度学术
7. 万嗣鹏,陶铁军,陈二平,刘永明,杨志强. 考虑岩体抗拉强度的爆破振动速度衰减多元非线性模型. 爆破器材. 2020(03): 53-58 . 百度学术
8. 王林峰,邓冰杰,莫诎,赵精富,肖弘光. 基于概率论的爆破振动安全评估与控制. 振动与冲击. 2020(14): 122-129 . 百度学术
9. 周文海,梁瑞,余建平,杜超飞,王敦繁,楼晓明. 边坡抛掷爆破峰值质点振动速度的无量纲分析. 爆炸与冲击. 2019(05): 76-83 . 本站查看
10. 袁旺小. 隧道掘进爆破地表振速的预测研究. 公路交通科技(应用技术版). 2019(05): 257-259 . 百度学术
11. 周文海,余建平,梁瑞,吕亚茹,王敦繁,陈宗杰. 基于逐步回归算法的边坡爆破振动控制研究. 长江科学院院报. 2019(07): 89-95 . 百度学术
12. 王奋,范勇,周宜红,赵春菊,严鹏. 隧洞爆破地震波作用下临近水电站的安全性评估. 爆破. 2017(02): 132-137 . 百度学术
13. 王玉乐,罗周全,谢承煜,随晓丹,曹祖华. 深孔爆破对隐患资源开采两帮的动力响应特性研究. 爆破. 2017(04): 33-39 . 百度学术
其他类型引用(6)
-