激波在不同三角楔面内传播特性的数值研究

郑纯 陈志华 张焕好 孙晓晖

郑纯, 陈志华, 张焕好, 孙晓晖. 激波在不同三角楔面内传播特性的数值研究[J]. 爆炸与冲击, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07
引用本文: 郑纯, 陈志华, 张焕好, 孙晓晖. 激波在不同三角楔面内传播特性的数值研究[J]. 爆炸与冲击, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07
Zheng Chun, Chen Zhihua, Zhang Huanhao, Sun Xiaohui. Numerical investigations on propagating characteristics of shock waves in different triangle wedges[J]. Explosion And Shock Waves, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07
Citation: Zheng Chun, Chen Zhihua, Zhang Huanhao, Sun Xiaohui. Numerical investigations on propagating characteristics of shock waves in different triangle wedges[J]. Explosion And Shock Waves, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07

激波在不同三角楔面内传播特性的数值研究

doi: 10.11883/1001-1455(2016)03-0379-07
基金项目: 

国家自然科学基金项目 11272156

国家自然科学基金项目 11502117

中国博士后基金项目 2015M571757

详细信息
    作者简介:

    郑纯(1992-),男,博士研究生

    通讯作者:

    陈志华,chenzh@mail.njust.edu.cn

  • 中图分类号: O381

Numerical investigations on propagating characteristics of shock waves in different triangle wedges

  • 摘要: 激波在收缩管内的反射与聚焦会形成高温高压区,点燃可燃混合气并诱导爆轰,因此对爆轰发动机的点火具有重要意义。本文基于二维N-S方程,结合五阶WENO格式,对马赫数为6的正激波在三角形楔面内的反射与聚焦现象进行了数值研究。结果表明,楔面顶角的变化对激波的反射类型以及聚焦均有明显的影响:随着顶角的增加,激波的反射类型从马赫反射向过渡马赫反射和双马赫反射转变,且壁面上的前向射流更加明显;三波点第一次碰撞产生的高温高压区足够满足可燃混合气体的点火条件,且其温度与压力值随顶角的增加而增大;当激波在楔面上发生临界双马赫反射时,温度与压力达到最大;当顶角增加到一定值时,激波在楔面反射转变为常规反射,不会产生激波对碰,因而没有高温高压区。
  • 图  1  计算模型

    Figure  1.  Computational model

    图  2  激波在楔面内的传播过程(θ=10°)

    Figure  2.  Process of shock wave propagation in the wedge (θ=10°)

    图  3  激波在楔面顶端聚焦时的高温高压区

    Figure  3.  High-temperature and high-pressure region generated when the shock wave focuses at the wedge vertex

    图  4  激波在楔面上反射的不同波系结构(t=0.16 ms)

    Figure  4.  Different structures of shock wave reflection on the wedges at t=0.16 ms

    图  5  激波在不同楔面上反射时的压力分布(t=0.16 ms)

    Figure  5.  Pressures distributed when the shock wave reflects on different wedges at t=0.16 ms

    图  6  三波点碰撞产生的高温高压区

    Figure  6.  High-temperature and high-pressure region generated by the collision of the triple points

    图  7  不同θ情况下三波点第1次碰撞时的温度与压力

    Figure  7.  Pressure and temperature recorded when the triple points first collide at different θ

  • [1] Sha S, Chen Z, Jiang X. Influences of obstacle geometries on shock wave attenuation[J]. Shock Waves, 2014, 24(6):573-582. doi: 10.1007/s00193-014-0520-9
    [2] 沙莎, 陈志华, 姜孝海.激波与障碍物作用加速衰减的数值研究[J].工程力学, 2014, 31(9):239-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201409033

    Sha Sha, Chen Zhihua, Jiang Xiaohai. Investigations into the accelerating attenuation of shock waves by obstacles[J]. Engineering Mechanics, 2014, 31(9):239-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201409033
    [3] Zhang H, Chen Z, Sun X, et al. Numerical investigations on the thrust augmentation mechanisms of ejectors driven by pulse detonation engines[J]. Combustion Science and Technology, 2011, 183(10):1069-1082. doi: 10.1080/00102202.2011.582054
    [4] Chan C K. Collision of a shock wave with obstacles in a combustible mixture[J]. Combustion and Flame, 1995, 100(1/2):341-348. http://www.sciencedirect.com/science/article/pii/001021809400139J
    [5] Gelfand B E, Khomik S V, Bartenev A M, et al. Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture[J]. Shock Waves, 2000, 10(3):197-204. doi: 10.1007-s001930050007/
    [6] Bartenev A M, Khomik S V, Gelfand B E, et al. Effect of reflection type on detonation initiation at shock-wave focusing[J]. Shock Waves, 2000, 10(3):205-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84898e087c6ed59c8a3738c81c405019
    [7] Setchell R E, Storm E, Sturtevant B. An investigation of shock strengthening in a conical convergent channel[J]. Journal of Fluid Mechanis, 1972, 56(3):505-522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112072002484
    [8] Li H, Ben-Dor G. A shock dynamics theory based analytical solution of double Mach reflections[J]. Shock Waves, 1995, 5(4):259-264. doi: 10.1007/BF01419007
    [9] Li H, Ben-Dor G. Analysis of double-Mach-reflection wave configurations with convexly curved Mach stems[J]. Shock Waves, 1999, 9(5):319-326. doi: 10.1007/s001930050192
    [10] Li H, Ben-Dor G. Reconsideration of pseudo-steady shock wave reflections and the transition criteria between them[J]. Shock Waves, 1995, 5(1):59-73. doi: 10.1007-BF02425036/
    [11] Ben-Dor G, Vasilev E I, Henderson L F, et al. The wall-jetting effect in Mach reflection: A numerical investigation[C]//Proceedings of the 24th International Symposium on Shock Waves. Beijing, China, 2004: 461-466.
    [12] 高云亮, 李进平, 胡宗民, 等.准定常强激波马赫反射波形的数值研究[J].空气动力学报, 2008, 26(4):456-461. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb200804008

    Gao Yunliang, Li Jinping, Hu Zongmin, et al. A numerical investigation on the Mach reflection patterns of quasi-steady strong shock waves[J]. Acta Aerodynamica Sinica, 2008, 26(4):456-461. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb200804008
    [13] 高云亮, 姜宗林.准定常强激波反射马赫杆突出变形准则的探讨[J].爆炸与冲击, 2009, 29(2):143-148. doi: 10.3321/j.issn:1001-1455.2009.02.006

    Gao Yunliang, Jiang Zonglin. On transition criterion of Mach stem deformation for Mach reflections of pseudosteady strong shock waves[J]. Explosion and Shock Waves, 2009, 29(2):143-148. doi: 10.3321/j.issn:1001-1455.2009.02.006
    [14] 孙晓晖, 陈志华, 张焕好.激波绕射碰撞加速诱导爆轰的数值模拟[J].爆炸与冲击, 2011, 31(4):407-412; doi: 10.11883/1001-1455(2011)04-0407-06

    Sun Xiaohui, Chen Zhihua, Zhang Huanhao. Numerical investigations on detonation initiation accelerated by collision of diffracted shock waves[J]. Explosion and Shock Waves, 2011, 31(4):407-412. doi: 10.11883/1001-1455(2011)04-0407-06
    [15] 孙晓晖, 陈志华, 张焕好, 等.激波绕射双方块加速诱导爆轰的数值研究[J].推进技术, 2011, 32(2):287-291. http://d.old.wanfangdata.com.cn/Periodical/tjjs201102024

    Sun Xiaohui, Chen Zhihua, Zhang Huanhao, et al. Numerical investigations on detonation induced by diffracted shock waves of double square obstacles[J]. Journal of Propulsion Technology, 2011, 32(2):287-291. http://d.old.wanfangdata.com.cn/Periodical/tjjs201102024
    [16] 王春, 司徒明, 韩肇元.用于爆震引燃的激波聚焦无反应流场数值模拟[J].推进技术, 2003, 24(2):156-159. doi: 10.3321/j.issn:1001-4055.2003.02.016

    Wang Chun, Situ Ming, Han Zhaoyuan. Numerical investigations on cold flowfields of shock focusing for ignition of pulse detonation[J]. Journal of Propulsion Technology, 2003, 24(2):156-159. doi: 10.3321/j.issn:1001-4055.2003.02.016
  • 加载中
图(7)
计量
  • 文章访问数:  4350
  • HTML全文浏览量:  1199
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-24
  • 修回日期:  2015-01-22
  • 刊出日期:  2016-05-25

目录

    /

    返回文章
    返回