Ballistic limit and damage properties of basalt/Kevlar stuffed shield
-
摘要: 为了研究玄武岩/Kevlar纤维布填充防护结构的撞击极限和损伤特性,采用非火药驱动二级轻气炮进行超高速撞击实验,拟合撞击极限曲线,并与Nextel/Kevlar填充防护结构及三层铝防护结构进行比较。结果表明:玄武岩/Kevlar填充防护结构具有和Nextel/Kevlar填充防护结构类似的防护效果,防护性能优于三层铝防护结构。进一步研究填充防护结构铝合金防护屏、纤维布填充层及铝合金舱壁的损伤形式,分析了造成防护屏、填充层与舱壁不同损伤形貌的原因,探索了玄武岩/Kevlar纤维布填充防护结构的防护机理,得出玄武岩纤维布填充层使弹丸碎化,而Kevlar填充层消耗、吸收和分散弹丸或碎片云的能量。Abstract: In order to study the ballistic limits and damage properties of the basalt/Kevlar stuffed shields, hypervelocity impact tests were carried out by non-power two-stage light-gas gun facilities. The ballistic limit curves were fitted with the test data, and compared with those of the Nextel/Kevlar stuffed shields and the all-aluminum triple-wall shields with the same areal density. The results indicate that the protection property of the basalt/Kevlar stuffed shields is the same as that of the Nextel/Kevlar stuffed shields, and better than that of the all-aluminum triple-wall shields. Further, the hypervelocity impact damage properties of the first bumper, the stuffed layer, and the rear wall were investigated. The reasons were analyzed which caused the damage types of the bumpers different, and the protection mechanisms of the basalt/Kevlar stuffed shields were explored. The results show that the basalt fabrics broke the aluminum projectiles into pieces, and the Kevlar fabrics absorbed and dissipated the energy of the aluminum projectiles or debris clouds.
-
Key words:
- mechanics of explosion /
- ballistic limit /
- hypervelocity impact /
- stuffed shield /
- basalt fabric /
- damage properties
-
表 1 玄武岩/Kevlar纤维填充防护结构超高速撞击实验结果
Table 1. Results of hypervelocity impact tests for basalt/Kevlar stuffed shields
实验
编号dp/mm v/(km·s-1) Dh/mm 舱壁
损伤防护
效果SW-33 7.94 0.650 8.15 鼓包 有效 SW-22 7.94 0.680 8.26 鼓包 有效 SW-32 7.94 0.750 8.42 穿孔 失效 SW-34 7.94 0.868 8.61 穿孔 失效 SW-26 7.94 0.977 8.73 穿孔 失效 SW-24 7.94 1.076 8.41 穿孔 失效 SW-23 7.94 1.097 8.65 穿孔 失效 SW-01 6.35 0.818 6.81 鼓包 有效 SW-02 6.35 0.940 7.74 微裂纹 失效 SW-04 6.35 0.974 7.01 微裂纹 失效 SW-05 6.35 1.112 7.30 微裂纹 失效 SW-03 6.35 1.149 7.09 穿孔 失效 SW-25 6.35 1.259 7.66 穿孔 失效 SW-13 4.76 1.374 6.04 鼓包 有效 SW-12 4.76 1.525 6.06 开裂 失效 SW-11 4.76 1.595 6.06 穿孔 失效 SW-08 3.97 1.211 5.58 鼓包 有效 SW-09 3.97 1.776 5.62 开裂 失效 SW-07 3.97 1.972 5.74 穿孔 失效 SW-06 3.97 2.242 6.05 穿孔 失效 SW-10 6.35 4.438 10.51 穿孔 失效 SW-47 6.35 4.443 10.34 穿孔 失效 SW-49 6.35 4.450 10.55 微裂 失效 SW-48 6.35 4.700 10.63 鼓包 有效 SW-18 4.76 3.205 7.76 穿孔 失效 SW-40 4.76 3.550 7.56 穿孔 失效 SW-19 4.76 3.572 7.51 穿孔 失效 SW-20 4.76 3.572 7.92 双鼓包 有效 SW-45 4.76 3.660 8.05 微鼓包 有效 SW-36 4.76 3.910 8.31 微鼓包 有效 SW-42 3.97 2.660 6.32 穿孔 失效 SW-43 3.97 2.660 6.55 微裂纹 失效 SW-16 3.97 2.809 6.44 穿孔 失效 SW-46 3.97 2.860 6.71 微裂纹 失效 SW-17 3.97 2.907 6.60 微裂纹 失效 SW-15 3.97 3.379 6.90 微鼓包 有效 SW-14 3.97 3.572 7.09 鼓包 有效 -
[1] Christiansen E L. Advanced meteoroid and debris shielding concepts[C]//AIAA/NASA/DOD Orbital Debris Conference: Technical Issues and Future Directions. Baltimore, MD, 1990. [2] Christiansen E L. Design and performance equations for advanced meteoroid and debris shields[J]. International Journal of Impact Engineering, 1993, 14(1):145-156. doi: 10.1016-0734-743X(93)90016-Z/ [3] Cour-Palais B G, Crews J L. A multi-shock concept for spacecraft shielding[J]. International Journal of Impact Engineering, 1990, 10(1):135-146. doi: 10.1016-0734-743X(90)90054-Y/ [4] Christiansen E L, Kerr J H. Mesh double-bumper shield:A low-weight alternative for spacecraft meteoroid and orbital debris protection[J]. International Journal of Impact Engineering, 1993, 14(1):169-180. doi: 10.1016-0734-743X(93)90018-3/ [5] 哈跃, 庞宝君, 管公顺, 等.玄武岩纤维布Whipple防护结构超高速撞击损伤分析[J].哈尔滨工业大学学报, 2007, 39(5):779-782. doi: 10.3321/j.issn:0367-6234.2007.05.025Ha Yue, Pang Baojun, Guan Gongshun, et al. Damage of high velocity impact on basalt fiber hybrid woven-Al Whipple shield[J]. Journal of Harbin Institute of Technology, 2007, 39(5):779-782. doi: 10.3321/j.issn:0367-6234.2007.05.025 [6] 张宝玺, 邓云飞, 哈跃, 等.超高速撞击玄武岩及Kevlar纤维布填充防护结构研究[J].固体力学学报, 2012, 33(5):533-540. doi: 10.3969/j.issn.0254-7805.2012.05.012Zhang Baoxi, Deng Yunfei, Ha Yue, et al. The optimal structural design of stuffed shield with basalt and Kevlar fiber clothes against hypervelocity impacting[J]. Chinese Journal of Solid Mechanics, 2012, 33(5):533-540. doi: 10.3969/j.issn.0254-7805.2012.05.012 [7] 苟海涛, 王应德, 闫军, 等.一种高性能复合织物填充防护结构撞击极限研究和防护机理分析[C]//中国空间科学学会空间材料专业委员会学术交流会议.2012. [8] Christiansen E L, Crews J L, Williamsen J E, et al. Enhanced meteoroid and orbital debris shielding[J]. International Journal of Impact Engineering, 1995, 17(1):217-228. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210172942/ [9] Christiansen E L, Kerr J H. Ballistic limit equations for spacecraft shielding[J]. International Journal of Impact Engineering, 2001, 26(1):93-104. http://www.sciencedirect.com/science/article/pii/S0734743X01000707 [10] Christiansen E L, Arnold J, Corsaro B, et al. Handbook for designing MMOD protection[R]. NASA Johnson Space Center, NASA/TM-2009-214785, 2009. [11] Maiden C J, McMillan A R. An investigation of the protection afforded a spacecraft by a thin shield[J]. AIAA Journal, 1964, 2(11):1992-1998. doi: 10.2514/3.2705 [12] Nysmith C R. Experimental investigation of the momentum transfer associated with impact into thin aluminum targets[R]. NASA TND-5492, 1969. [13] Sawle D R. Hypervelocity impact in thin sheets, semi-infinite targets at 15 km/s[J]. AIAA Journal, 1970, 8(7):1240-1244. doi: 10.2514/3.5879 [14] 管公顺, 庞宝君, 崔乃刚, 等.铝球弹丸超高速正撞击薄铝板穿孔尺寸研究[J].工程力学, 2007, 24(12):181-185. doi: 10.3969/j.issn.1000-4750.2007.12.031Guan Gongshun, Pang Baojun, Cui Naigang, et al. Size investigation of hole due to hypervelocity impact aluminum spheres on thin aluminum sheet[J]. Engineering Mechanics, 2007, 24(12):181-185. doi: 10.3969/j.issn.1000-4750.2007.12.031