Influence factors of gas explosion venting in linked vessels
-
摘要: 以甲烷/空气混合物为研究对象,开展了连通容器气体泄爆影响因素的实验研究。结果表明:连通容器泄爆片泄爆时,随着破膜压力和量纲一泄压比的减小,大、小球容器的最大泄爆压力均增大;在等量纲一泄压比条件下,随着连接管道长度的增加,传爆容器的最大泄爆压力增大。连通容器无膜泄爆时,大球点火条件下,无论管长如何,起爆容器和传爆容器均比单个容器最大泄爆压力大。小球点火条件下,当管道长度为0.45 m时,起爆容器和传爆容器的最大泄爆压力均小于单个容器。连通容器无膜泄爆且量纲一泄压比相同时,当管道长度为0.45 m时,大、小容器内的最大泄爆压力基本相等;当管道长度为2.45 m时,大容器点火时,传爆容器最大爆炸压力大于起爆容器,但小容器点火时,起爆容器最大泄爆压力大于传爆容器;当管道长度为4.45和6.45 m时,传爆容器最大泄爆压力均大于起爆容器。Abstract: A series of experiments were conducted to study the factors influencing gas explosion venting in methane-air mixture explosion in linked vessels. For the linked vessels, the maximum explosion venting pressure in both the big vessel and the small vessel increases when the rupture disk bursting pressure and the dimensionless ratio of the vent area to the vessel volume decrease. At the same dimensionless ratio, the maximum explosion venting pressure in the secondary vessel increases with the pipe length regardless of the ignition occurring in the big or in the small vessel. The maximum explosion venting pressures in the primary and in the secondary vessels are higher than that in the single vessel for ignition in the big vessel without a rupture disk. However, when the pipe length is 0.45 m, the maximum explosion venting pressures in the primary and in the secondary vessel are lower than that in the single vessel for ignition occurring in the small vessel without a rupture disk. At the same dimensionless ratio of the vent area to the vessel volume, the maximum explosion venting pressure in the big vessel and that in the small one are close to each other when the pipe length is 0.45 m for explosion venting in linked vessels without a rupture disk. However, when the pipe length is 2.45 m, the maximum explosion venting pressure in the primary vessel is higher than that in the secondary vessel for ignition in the small vessel. When the pipe length is 4.45 m or 6.45 m, the maximum explosion venting pressure in the secondary vessel is higher than that in the primary vessel.
-
表 1 不同泄爆位置下连通容器的泄爆特性
Table 1. Characteristic of explosion venting pressure in linked vessels at different positions of explosion venting
点火位置 泄爆口位置 A/cm2 pm(1)/MPa pm(2)/MPa 小球点火 小球泄爆 5.30 0.811 9 0.328 0 小球点火 大球泄爆 5.30 0.697 8 0.453 7 小球点火 大、小球泄爆 5.30 0.594 2 0.254 7 大球点火 小球泄爆 5.30 0.374 5 1.189 3 大球点火 大、小球泄爆 5.30 0.406 3 1.146 6 表 2 不同连通方式的容器大球中心点火时,大、小球容器的最大泄爆压力
Table 2. Maximum explosion venting pressure in the big and the small vessels in linked vessels with different pipe connections when ignited in big vessel
d/mm pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa 大球 小球 两球对接 一段管连接 两段管连接 三段管连接 50.0 30.0 0.564 9 0.540 9 0.515 3 0.828 4 0.510 6 0.973 1 0.458 9 1.020 2 40.0 23.0 0.555 7 0.582 1 0.547 3 0.875 5 0.551 8 1.067 5 0.553 3 1.110 3 30.0 17.5 0.618 3 0.632 4 0.525 5 0.962 2 0.577 7 1.209 0 0.589 4 1.292 5 23.0 13.0 0.635 6 0.654 4 0.542 7 1.015 0 0.590 9 1.299 5 0.667 3 1.301 1 表 3 不同管长连通容器给定破膜压力并大球中心点火时,大、小球容器的最大泄爆压力
Table 3. Maximum explosion venting pressure in linked vessels with different pipe lengths under given rupture pressures when ignited in big vessel
L/m pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa pb=0.164 4 MPa pb=0.209 8 MPa pb=0.305 5 MPa pb=0.320 1 MPa 0.45 0.622 4 0.652 5 0.704 7 0.656 9 0.628 5 0.588 8 0.633 9 0.680 4 2.45 0.510 6 0.970 3 0.612 4 1.010 8 0.629 1 1.048 0 0.597 1 1.079 9 4.45 0.660 2 1.205 0 0.643 5 1.226 8 0.626 2 1.366 7 0.617 7 1.421 3 表 4 不同管长连通容器给定破膜压力并小球中心点火时,大、小球容器的最大泄爆压力
Table 4. Maximum explosion venting pressure in linked vessels with different pipe lengths under given rupture pressures when ignited in small vessel
L/m pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa pm(1)/MPa pm(2)/MPa pb=0.164 4 MPa pb=0.209 8 MPa pb=0.305 5 MPa pb=0.320 1 MPa 0.45 0.533 5 0.521 8 0.551 1 0.532 3 0.589 8 0.569 1 0.643 3 0.634 2 2.45 0.510 2 0.525 9 0.543 6 0.595 9 0.586 9 0.614 0 0.589 9 0.635 8 4.45 0.695 3 0.595 6 0.683 4 0.618 8 0.690 0 0.647 8 0.731 2 0.680 2 -
[1] Wang Z R, Pan M Y, Jiang J C. Experimental investigation of gas explosion in single vessel and connected vessels[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1094-1098. doi: 10.1016/j.jlp.2013.04.007 [2] Razus D M, Krause U. Comparison of empirical and semi-empirical calculation methods for venting of gas explosions[J]. Fire Safety Journal, 2001, 36(1):1-23. doi: 10.1016/S0379-7112(00)00049-7 [3] VDI 3673 Blatt 1/Part 1. Pressure venting of gas and dust explosions[R]. VDI/DIN-Handbuch Reinhaltung der Luft, Band 6 VDI-Handbuch Umwelttechnik, 2002. [4] Guide for venting of deflagrations: NFPA 68[S]. National Fire Protection Association, Quincy, MA, USA, 1998. [5] 王志荣, 蒋军成, 郑杨艳.连通容器气体爆炸流场的CFD模拟[J].化工学报, 2007, 58(4):854-861. doi: 10.3321/j.issn:0438-1157.2007.04.010Wang Zhirong, Jiang Juncheng, Zheng Yangyan. CFD simulation on gas explosion field in linked vessels[J]. Journal of Chemical Industry and Engineering, 2007, 58(4):854-861. doi: 10.3321/j.issn:0438-1157.2007.04.010 [6] 王志荣, 蒋军成, 周超.连通装置气体爆炸特性实验[J].爆炸与冲击, 2011, 31(1):69-74. doi: 10.11883/1001-1455(2011)01-0069-06Wang Zhirong, Jiang Juncheng, Zhou Chao. Experimental investigation of gas explosion characteristic in linked vessels[J]. Explosion and Shock Waves, 2011, 31(1):69-74. doi: 10.11883/1001-1455(2011)01-0069-06 [7] 姜孝海.泄爆外流场的动力学机理研究[D].南京: 南京理工大学, 2004. [8] Phylaktou H, Andrews G E. The acceleration of flame propagation in a tube by an obstacle[J]. Combustion and Flame, 1991, 85(3):363-379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43919d6872a473106dc8da5c03540ffc [9] Holbrow P, Lunn G A, Tyldesley A. Dust explosion protection in linked vessels:Guidance for containment and venting[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(3):227-234. doi: 10.1016/S0950-4230(98)00050-3 [10] Lunn G A, Holbrow P, Andrews S, Gummer J. Dust explosions in totally enclosed interconnected vessel systems[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1):45-58. doi: 10.1016/0950-4230(95)00052-6 [11] Holbrow P, Andrews S, Lunn G A. Dust explosion in interconnected vented vessels[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1):91-103. doi: 10.1016/0950-4230(95)00055-0 [12] 王志荣, 周超, 师喜林, 等.连通容器内预混气体泄爆过程[J].化工学报, 2011, 62(10):287-291. http://d.old.wanfangdata.com.cn/Periodical/hgxb201101044Wang Zhirong, Zhou Chao, Shi Xilin, et al. Gas explosion venting of premixed gases in linked vessels[J]. Journal of Chemical Industry and Engineering, 2011, 62(10):287-291. http://d.old.wanfangdata.com.cn/Periodical/hgxb201101044 [13] 尤明伟, 蒋军成, 喻源, 等.泄爆面积对连通容器预混气体泄爆影响的实验研究[J].实验流体力学, 2011, 25(5):51-54. doi: 10.3969/j.issn.1672-9897.2011.05.011You Mingwei, Jiang Juncheng, Yu Yuan, et al. Experimental study on effect of venting area on premixed flammable gas explosion venting in linked vessels[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5):51-54. doi: 10.3969/j.issn.1672-9897.2011.05.011 [14] 尤明伟, 傅伟斌, 蒋军成.连通容器气体密闭爆炸与泄爆过程的实验研究[J].中国安全生产技术, 2014, 10(7):11-15. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201407002You Mingwei, Fu Weibin, Jiang Juncheng. Experimental investigation on gas explosion and venting in linked vessels[J]. Journal of Safety Science and Technology, 2014, 10(7):11-15. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201407002 [15] 尤明伟, 蒋军成, 喻源, 等.等泄压比条件下连通容器泄爆实验研究[J].爆炸与冲击, 2012, 32(2):221-224. doi: 10.3969/j.issn.1001-1455.2012.02.018You Mingwei, Jiang Juncheng, Yu Yuan, et al. Experimental study on premixed flammable gas explosion venting in linked vessels under the same effictive vent area[J]. Explosion and Shock Waves, 2012, 32(2):221-224. doi: 10.3969/j.issn.1001-1455.2012.02.018 [16] 尤明伟, 蒋军成, 喻源, 等.不同管长条件下连通容器预混气体泄爆实验[J].化工学报, 2011, 62(10):2969-2973. doi: 10.3969/j.issn.0438-1157.2011.10.042You Mingwei, Jiang Juncheng, Yu Yuan, et al. Experimental premixed flammable gas explosion venting in linked vessels with different pipe length[J]. Journal of Chemical Industry and Engineering, 2011, 62(10):2969-2973. doi: 10.3969/j.issn.0438-1157.2011.10.042