Experimental study on expansion characteristics of annular four wall combustion-gas jets in a liquid-filled cylindrical chamber
-
摘要: 为了探索高温高压周向均布4股贴壁燃气射流在受限空间中的扩展特性,设计了贴壁燃气射流在圆柱形充液室内扩展的实验装置,借助数字高速录像系统,观察了4股贴壁燃气射流在充液室中的扩展过程,发现由Kelvin-Helmholtz不稳定性引起的表面不规则一直存在于整个射流扩展过程;通过处理拍摄记录的射流扩展序列图,获得不同时刻射流扩展的轴向和径向位移; 对比了不同破膜喷射压力和喷孔结构参数对4股贴壁燃气射流扩展过程的影响。实验结果表明:喷孔面积越大,贴壁射流初期轴向扩展速度越大,但由于径向扩展达到交汇的时间较早,湍流掺混和干涉强烈,衰减也越快;破膜喷射压力越高,射流径向扩展到达交汇的时间越短; 破膜喷射压力从12 MPa升高到20 MPa,射流轴向扩展速度大幅增加,气液湍流掺混效应增强。Abstract: The combustion-gas generator and liquid-filled cylindrical chamber are designed to study the expansion characteristics of annular four wall combustion-gas jets under high temperature and high pressure in a confined space. The expansion processes of Taylor cavities formed by combustion-gas jets are observed by means of a high-speed digital photographic system. It is shown that the irregular interface induced by the Kelvin-Helmholtz instability exists in the entire expansion process of the jets. The axial and radial displacements at different times are obtained from a series of expansion photographs of gas jets. The effects of the blasting injection pressure and the parameters of the nozzle structure on the expansion characteristics of the annular four wall combustion-gas jets are discussed. The experimental results indicate that, the larger the nozzle orifice area, the greater the axial expansion velocity of the wall jets in the prime stage. Meanwhile, the axial expansion velocity attenuates more quickly due to the effect of turbulent mixing and interference. The higher the blasting injection pressure, the earlier the four jets begin converging. Moreover, the axial expansion velocity of the wall jet increases substantially and the gas-liquid turbulent mixing effect becomes much stronger when the blasting injection pressure increases from 12 MPa to 20 MPa.
-
表 1 喷孔的结构参数
Table 1. Parameters of nozzle structure
类型 形状 S A 半圆形 8 mm2 B 长方形 2 mm×4 mm C 长方形 3 mm×4 mm 表 2 Taylor空腔轴向位移随时间变化曲线的拟合参数
Table 2. Fitted parameters for axial displacement-time curves of Taylor cavity
p/MPa 喷孔类型 B0/mm B1/mm B2/ms 20 A 286.4 -286.2 10.1 20 B 397.3 -396.5 17.5 表 3 Taylor空腔轴向位移随时间变化曲线的拟合参数
Table 3. Fitted parameters for axial displacement-time curves of Taylor cavity
p/MPa 喷孔类型 B0/mm B1/mm B2/ms 20 B 397.3 -396.5 17.5 20 C 218.1 -217.1 7.3 表 4 Taylor空腔轴向位移随时间变化曲线的拟合参数
Table 4. Fitted parameters for axial displacement-time curves of Taylor cavity
p/MPa 喷孔类型 B0/mm B1/mm B2/ms 10 A 216.6 -215.1 8.0 20 A 286.4 -286.2 10.1 -
[1] Loth E, Faeth G M. Structure of underexpanded round air jets submerged in water[J]. International Journal of Multiphase Flow, 1989, 15(4):589-603. doi: 10.1016/0301-9322(89)90055-4 [2] Loth E, Faeth G M. Structure of plane underexpanded air jets into water[J]. Aiche Journal, 1990, 36(6):818-826. doi: 10.1002/(ISSN)1547-5905 [3] Chen Yongsheng, Liu Hua. Mathematical modeling of fluid flows for underwater missile launch[J]. Journal of Hydrodynamics, 2006, 18(3):492-497. doi: 10.1016/S1001-6058(06)60100-5 [4] Chen Yongsheng, Liu Hua. A coupling model of water flows and gas flows in exhausted gas bubble on missile launched underwater[J]. Journal of Hydrodynamics, 2007, 19(4):403-411. doi: 10.1016/S1001-6058(07)60133-4 [5] 甘晓松, 贾有军, 鲁传敬, 等.水下燃气射流流场数值研究[J].固体火箭技术, 2009, 32(1):23-26. doi: 10.3969/j.issn.1006-2793.2009.01.006Gan Xiaosong, Jia Youjun, Lu Chuanjing, et al. Research on numerical simulation of combustion gas jet under water[J]. Journal of Solid Rocket Technology, 2009, 32(1):23-26. doi: 10.3969/j.issn.1006-2793.2009.01.006 [6] Tang Jianing, Wang Ningfei, Shyy W. Flow structures of gaseous jets injected into water for underwater propulsion[J]. Acta Mechanica Sinica, 2011, 27(4):461-472. doi: 10.1007/s10409-011-0474-4 [7] 施红辉, 王柏懿, 戴振卿.水下超声速气体射流的力学机制研究[J].中国科学:物理学, 力学, 天文学, 2010, 40(1):92-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201001012Shi Honghui, Wang Boyi, Dai Zhenqing. Research on the mechanical mechanism of underwater supersonic gas jets[J]. Scientia Sinica:Physica, Mechanica & Astronomica, 2010, 40(1):92-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201001012 [8] 汤龙生, 刘宇, 吴智锋, 等.水下超声速燃气射流气泡的生长及压力波传播特性实验研究[J].推进技术, 2011, 32(3):417-420. http://d.old.wanfangdata.com.cn/Periodical/tjjs201103022Tang Longsheng, Liu Yu, Wu Zhifeng, et al. Experimental study on characteristics of bubble growth and pressure wave propagation by supersonic gas jets under water[J]. Journal of Propulsion Technology, 2011, 32(3):417-420. http://d.old.wanfangdata.com.cn/Periodical/tjjs201103022 [9] Weiland C, Vlachos P P. Round gas jets submerged in water[J]. International Journal of Multiphase Flow, 2013, 48:46-57. doi: 10.1016/j.ijmultiphaseflow.2012.08.002 [10] Voropayev S I, Sanchez X, Nath C, et al. Evolution of a confined turbulent jet in a long cylindrical cavity:Homogeneous fluids[J]. Physics of Fluids, 2011, 23(11):115106. doi: 10.1063/1.3662442 [11] Liberzon D, Fernando H J S. Pressure distribution in confined jet flow[J]. Journal of Fluids Engineering, 2014, 136(3):1-4. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232494669/ [12] Yu Yonggang, Chang Xuexia, Zhao Na, et al. Study of bulk-loaded liquid propellant combustion propulsion processes with stepped-wall combustion chamber[J]. Journal of Applied Mechanics, 2011, 78(5):748-760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=033da2348638de4a9a7c7bfb4a32014a [13] Yu Yonggang, Yan Shanheng, Lu Xin, et al. Study on expansion process and interaction of high speed twin combustion-gas jets in liquid[J]. Journal of Applied Mechanics, 2010, 77(5):769-775. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01bf1cf1dc1bc6b1dc4b4bee0715816e [14] 齐丽婷, 余永刚, 彭志国, 等.含能气体射流在液体工质中扩展的两维模型及数值模拟[J].含能材料, 2008, 16(2):131-137. doi: 10.3969/j.issn.1006-9941.2008.02.004Qi Liting, Yu Yonggang, Peng Zhiguo, et al. A 2-D model of energetic gas jet expansion process in liquid and numerical simulation[J]. Chinese Journal of Energetic Materials, 2008, 16(2):131-137. doi: 10.3969/j.issn.1006-9941.2008.02.004 [15] 莽珊珊, 余永刚.高压热气流与整装式液体工质相互作用的实验研究[J].工程热物理学报, 2009, 30(12):2017-2020. doi: 10.3321/j.issn:0253-231X.2009.12.010Mang Shanshan, Yu Yonggang. Experimental study on the interaction of high-pressure hot gas jet with bulk-loaded liquid[J]. Journal of Engineering Thermophysics, 2009, 30(12):2017-2020. doi: 10.3321/j.issn:0253-231X.2009.12.010 [16] 莽珊珊, 余永刚.高压燃气射流在整装液体中扩展过程的实验和数值模拟[J].爆炸与冲击, 2011, 31(3):300-305. doi: 10.11883/1001-1455(2011)03-0300-06Mang Shanshan, Yu Yonggang. Experiment and numerical simulation for high pressure combustible gas jet expansion process in a bulk-loaded liquid[J]. Explosion and Shock waves, 2011, 31(3):300-305. doi: 10.11883/1001-1455(2011)03-0300-06 [17] Xue Xiaochun, Yu Yonggang, Zhang Qi. Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber[J]. Journal of Hydrodynamics, 2013(5):763-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz-e201305015 [18] Xue Xiaochun, Yu Yonggang, Zhang Qi. Study on expansion characteristic of twin combustion gas jets in five-stage cylindrical stepped-wall observation chamber[J]. Flow Turbulence and Combustion, 2013, 91(1):139-155. doi: 10.1007/s10494-013-9461-0 [19] Tam C K W, Thies A T. Instability of rectangular jets[J]. Journal of Fluid Mechanics, 1993, 248:425-448. doi: 10.1017/S0022112093000837