Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials
-
摘要: 采用相似材料模拟实验方法并借助SHPB(split Hopkinson pressure bar)实验系统,探究应变率及节理倾角对节理岩石动态力学性状的影响,包括应力应变曲线特征、破坏模式、能量传递及耗散规律。该实验结果表明:应变率升高,动态弹性模量增大,试件破碎块度变小,完整试件裂纹缺陷沿着平行于压应力方向扩展;节理角度越大,峰值强度越低,但当应变率升高到一定程度,节理角度对岩石破坏形态的影响不再明显;不同试件的入射能、反射能、透射能和耗散能均随应变率升高呈非线性增加,含倾斜角度节理试件的能量耗散率随应变率的变化幅度明显大于完整试件。Abstract: By using a split Hopkinson pressure bar (SHPB) technique, impact experiments were carried out on the jointed rock specimens simulated by cement-based mortar specimens. The dynamic responses of the simulated jointed rock material with different joint angles at different strain rates were analyzed including stress-strain curve characteristics, failure modes, energy transmission and dissipation. The experimental results show that, with the increase of strain rate, the dynamic elastic moduli increase, and the specimens become more fragile. The peak intensity decreases with the increase of the joint angles whereas when the strain rate increases to a certain extent, the influence of the joint angles on the rock damage formation is no longer obvious. The incident energy, the reflective energy, the transmission energy, and the dissipation energy of the different specimens nonlinearly increase with the increase of the strain rate. The energy dissipation rates of the specimens with inclination joint angles are higher than those of the intact specimens with the increase of the strain rate.
-
Key words:
- solid mechanics /
- dynamic response /
- SHPB /
- jointed rock /
- joint angle /
- strain rate /
- dissipation energy
-
表 1 不同撞击条件下试件几何参数
Table 1. Geometry parameters of specimens under different impact conditions
N p/MPa v/(m·s-1) D/mm l/mm β/(°) n 贯通程度 X7 0.55 3.283 48.20 100.51 完整 X6 0.55 3.903 48.63 100.22 完整 X4 0.58 4.867 48.53 99.85 完整 X11 0.58 5.023 48.25 100.06 完整 X3 0.60 5.445 48.46 99.91 完整 X5 0.60 5.993 48.73 100.13 完整 B10 0.54 2.510 48.61 100.41 15 1 径向贯通 B12 0.55 3.356 48.61 100.40 15 1 径向贯通 B4 0.55 3.794 48.68 100.33 15 1 径向贯通 B13 0.55 4.082 49.66 100.21 15 1 径向贯通 B5 0.58 5.082 48.75 100.73 15 1 径向贯通 B6 0.60 6.004 48.55 100.51 15 1 径向贯通 C11 0.55 3.563 48.48 101.89 30 1 径向贯通 C4 0.55 3.913 48.73 99.98 30 1 径向贯通 C1 0.55 4.167 48.67 101.39 30 1 径向贯通 C5 0.58 5.116 50.12 99.81 30 1 径向贯通 C6 0.60 5.581 48.74 101.41 30 1 径向贯通 C3 0.60 5.699 49.64 100.91 30 1 径向贯通 表 2 SHPB动态冲击下不同试件的能量分布
Table 2. Energy distribution of different specimens subjected to SHPB dynamic impact
N v/(m·s-1) /s-1 Ei/J Er/J Et/J Ed/J Ed/Ei X7 3.283 28.12 55.67 22.74 14.49 18.45 0.331 4 X6 3.903 31.76 81.57 22.38 34.53 24.66 0.302 3 X4 4.867 38.59 119.16 40.23 34.17 44.76 0.375 6 X11 5.023 39.73 133.50 63.58 24.65 45.27 0.339 1 X3 5.445 45.39 158.32 72.45 30.49 55.38 0.349 8 X5 5.993 54.94 189.25 100.90 26.25 62.10 0.328 1 B10 2.510 20.07 29.57 21.15 2.40 6.02 0.203 6 B12 3.356 25.17 55.72 32.23 8.55 14.95 0.268 3 B4 3.794 32.28 71.95 51.08 3.82 17.05 0.237 0 B13 4.082 35.71 80.92 38.58 9.48 32.86 0.406 1 B5 5.082 44.67 136.01 77.57 7.25 51.19 0.376 4 B6 6.004 47.16 186.31 88.15 15.01 83.16 0.446 4 C11 3.563 30.12 67.56 45.77 4.74 17.05 0.252 4 C4 3.913 33.78 74.81 58.23 1.64 14.93 0.199 6 C1 4.167 37.26 85.59 40.69 7.08 37.82 0.441 9 C5 5.116 42.34 134.49 58.05 23.26 53.18 0.395 4 C6 5.581 50.85 161.88 117.04 7.23 37.62 0.232 4 C3 5.699 52.79 163.74 85.63 9.31 68.81 0.420 2 -
[1] 洪亮, 李夕兵, 马春德, 等.岩石动态强度及其应变率灵敏性的尺寸效应研究[J].岩石力学与工程学报, 2008, 27(3):526-533. doi: 10.3321/j.issn:1000-6915.2008.03.012Hong Liang, Li Xibing, Ma Chunde, et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3):526-533. doi: 10.3321/j.issn:1000-6915.2008.03.012 [2] 刘军忠, 许金余, 吕晓聪, 等.冲击压缩荷载下角闪岩的动态力学性能试验研究[J].岩石力学与工程学报, 2009, 28(10):2113-2120. doi: 10.3321/j.issn:1000-6915.2009.10.020Liu Junzhong, Xu Jinyu, Lü Xiaocong, et al. Experimental study on dynamic mechanical properties of amphibolites under impact compressive loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):2113-2120. doi: 10.3321/j.issn:1000-6915.2009.10.020 [3] 刘传雄, 李玉龙, 吴子燕, 等.混凝土材料的动态压缩破坏机理及本构关系[J].振动与冲击, 2011, 30(5):1-5. doi: 10.3969/j.issn.1000-3835.2011.05.001Liu Chuanxiong, Li Yulong, Wu Ziyan, et al. Failure mechanism and constitutive model of a concrete material under dynamic compressive loads[J]. Journal of Vibration and Shock, 2011, 30(5):1-5. doi: 10.3969/j.issn.1000-3835.2011.05.001 [4] 刘石, 许金余, 刘军忠, 等.绢云母石英片岩和砂岩的SHPB试验研究[J].岩石力学与工程学报, 2011, 30(9):1864-1871. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201109014Liu Shi, Xu Jinyu, Liu Junzhong, et al. SHPB experimental study of sericite-quartz schist and sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9):1864-1871. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201109014 [5] 宫凤强, 陆道辉, 李夕兵, 等.不同应变率下砂岩动态强度准则的试验研究[J].岩土力学, 2013, 34(9):2433-2441. http://d.old.wanfangdata.com.cn/Periodical/ytlx201309001Gong Fengqiang, Lu Daohui, Li Xibing, et al. Experimental research of sandstone dynamic strength criterion under different strain rates[J]. Rock and Soil Mechanics, 2013, 34(9):2433-2441. http://d.old.wanfangdata.com.cn/Periodical/ytlx201309001 [6] 宫凤强, 李夕兵, 刘希灵.三轴SHPB加载下砂岩力学特性及破坏模式试验研究[J].振动与冲击, 2012, 31(8):29-32. doi: 10.3969/j.issn.1000-3835.2012.08.006Gong Fengqiang, Li Xibing, Liu Xiling. Tests for sandstone mechnical properties and failure model under triaxial SHPB loading[J]. Journal of Vibration and Shock, 2012, 31(8):29-32. doi: 10.3969/j.issn.1000-3835.2012.08.006 [7] 刘晓辉, 张茹, 刘建锋.不同应变率下煤岩冲击动力试验研究[J].煤炭学报, 2012, 37(9):1528-1534. http://d.old.wanfangdata.com.cn/Periodical/mtxb201209022Liu Xiaohui, Zhang Ru, Liu Jianfeng. Dynamic test study of coal rock under different strain rates[J]. Journal of China Coal Society, 2012, 37(9):1528-1534. http://d.old.wanfangdata.com.cn/Periodical/mtxb201209022 [8] 许金余, 吕晓聪, 张军, 等.循环冲击作用下围压对斜长角闪岩动态特性的影响研究[J].振动与冲击, 2010, 29(8):60-63, 72. doi: 10.3969/j.issn.1000-3835.2010.08.015Xu Jinyu, Lü Xiaocong, Zhang Jun, et al. Research on dynamic mechanical performance of amphibolite under cyclical impact loadings at different confining pressures[J]. Journal of Vibration and Shock, 2010, 29(8):60-63, 72. doi: 10.3969/j.issn.1000-3835.2010.08.015 [9] 刘军忠, 许金余, 吕晓聪, 等.主动围压下岩石的冲击力学性能试验研究[J].振动与冲击, 2011, 30(6):120-126. doi: 10.3969/j.issn.1000-3835.2011.06.025Liu Junzhong, Xu Jinyu, Lü Xiaocong, et al. Experimental study on rock's mechanical capabilities under impact loading with confining pressure[J]. Journal of Vibration and Shock, 2011, 30(6):120-126. doi: 10.3969/j.issn.1000-3835.2011.06.025 [10] 刘红岩, 王贵和.节理岩体冲击破坏的数值流形方法模拟[J].岩土力学, 2009, 30(11):3523-3527. doi: 10.3969/j.issn.1000-7598.2009.11.051Liu Hongyan, Wang Guihe. Simulation of impact failure of jointed rock mass by numerical manifold method[J]. Rock and Soil Mechanics, 2009, 30(11):3523-3527. doi: 10.3969/j.issn.1000-7598.2009.11.051 [11] 刘红岩, 邓正定, 王新生, 等.节理岩体动态破坏的SHPB相似材料试验研究[J].岩土力学, 2014, 37(3):659-665. http://d.old.wanfangdata.com.cn/Periodical/ytlx201403009Liu Hongyan, Deng Zhengding, Wang Xinsheng, et al. Similar material test study of dynamic failure of jointed rock mass with SHPB[J]. Rock and Soil Mechanics, 2014, 37(3):659-665. http://d.old.wanfangdata.com.cn/Periodical/ytlx201403009 [12] 高全臣, 陆华, 王东, 等.多孔隙流固耦合砂岩的冲击损伤效应[J].爆炸与冲击, 2012, 32(6):629-634. doi: 10.3969/j.issn.1001-1455.2012.06.012Gao Quanchen, Lu Hua, Wang Dong, et al. Impact damage effect of porous sandstone coupling with fluid[J]. Explosion and Shock Waves, 2012, 32(6):629-634. doi: 10.3969/j.issn.1001-1455.2012.06.012 [13] Wang T T, Shang B. Three-wave mutual-checking method for data processing of SHPB experiments of concrete[J]. Journal of Mechanics, 2014, 30(5):5-10. doi: 10.1017/jmech.2014.55 [14] 陈腾飞, 许金余, 刘石, 等.岩石在冲击压缩破坏过程中的能量演化分析[J].地下空间与工程学报, 2013, 9 (s1):1477-1482. http://d.old.wanfangdata.com.cn/Periodical/dxkj2013z1003Chen Tengfei, Xu Jinyu, Liu Shi, et al. Research on rock energy evolution in the process of impact compression failure[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(s1):1477-1482. http://d.old.wanfangdata.com.cn/Periodical/dxkj2013z1003 [15] 金解放, 李夕兵, 殷志强, 等.轴压和围压对循环冲击下砂岩能量耗散的影响[J].岩土力学, 2013, 34(11):3096-3102, 3109. http://d.old.wanfangdata.com.cn/Periodical/ytlx201311011Lin Jiefang, Li Xibing, Yin Zhiqiang, et al. Effects of axial compression and confining pressure on energy dissipation of sandstone under cyclic impact loads[J]. Rock and Soil Mechanics, 201, 34(11):3096-3102, 3109. http://d.old.wanfangdata.com.cn/Periodical/ytlx201311011 [16] 刘婷婷, 李建春, 李海波, 等.应力波通过非线性平行节理的能量分析[J].岩石力学与工程学报, 2013, 32(8):1610-1617. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201308013Liu Tingting, Li Jianchun, Li Haibo, et al. Energy analysis of stress wave propagation across parallel nonlinear joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8):1610-1617. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201308013 [17] 黎立云, 徐志强, 谢和平, 等.不同冲击速度下岩石破坏能量规律的实验研究[J].煤炭学报, 2011, 36(12):2007-2011. http://d.old.wanfangdata.com.cn/Periodical/mtxb201112010Li Liyun, Xu Zhiqiang, Xie Heping, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities[J]. Journal of China Coal Society, 2011, 36(12):2007-2011. http://d.old.wanfangdata.com.cn/Periodical/mtxb201112010 [18] 鞠杨, 李业学, 谢和平, 等.节理岩石的应力波动与能量耗散[J].岩石力学与工程学报, 2006, 25(12):2426-2434. doi: 10.3321/j.issn:1000-6915.2006.12.007Ju Yang, Li Yexue, Xie Heping, et al. Stress wave propagation and energy dissipation in jointed rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12):2426-2434. doi: 10.3321/j.issn:1000-6915.2006.12.007