A shock-reload wave technique for dynamic strength study of materials at high pressure by self-consistent method
-
摘要: 针对自洽强度方法存在的冲击加载-再加载的难题,提出了一种采用较高硬度材料为支撑制作组合飞片的简便方法。利用该方法获得了铝、锡和锆基金属玻璃较理想的冲击加载-再加载粒子速度剖面,验证了该方法的有效性。由本文获得的冲击加载-再加载粒子速度剖面,并根据自洽方法,计算得到了铝、锡和锆基金属玻璃再加载过程剪应力变化数据。进一步分析表明,在本文涉及的压力范围内,仅由冲击加载-卸载实验得到的铝、锡和锆基金属玻璃屈服强度将比实际结果降低20%~50%。因此,在采用自洽方法计算高压强度时,冲击加载-再加载数据不可或缺。Abstract: A convenient method for fabricating a layered impactor with a sample backed up by high hardness materials was developed to overcome the obstacle of the shock-reload experiments in the self-consistent yield strength technique. This method was validated by a series of ideal shock-reload particle velocities of aluminum, tin, and Zr-based bulk metallic glass obtained from the reverse-impact experiments at the peak shock stresses from 28 GPa to 48 GPa. The sum of the shear stresses for these materials in the reload process from the shocked state was estimated, and compared with the previously reported data in the release process. It is shown that the yield strength under a high pressure for the materials investigated will underestimate 20%-50% if without the reload data. Thus, shock-reload experiments are essential for the self-consistent yield strength method.
-
表 1 平板冲击实验条件及结果
Table 1. Experimental conditions and results for planar plate-impact experiments
实验编号 样品材料 Hs/mm 支撑材料 hs/mm Ds/(km·s-1) p/GPa (τc-τH)/GPa 1 LY12铝 1.445 TC4 3.01 3.67 38.3 0.73 2 LY12铝 1.465 Ta/TC4 3.05/2.09 4.39 48.5 0.77 3 锡 2.013 45钢 4.50 2.49 28.7 0.07 4 锡 2.015 45钢 4.50 3.08 38.1 0.16 5 锆基金属玻璃 3.135 45钢 4.50 3.00 39.1 0.53 -
[1] Fowles G R. Shock wave compression of hardened and annealed 2024 aluminum[J]. Journal of Applied Physics, 1961, 32(8):1475-1487. doi: 10.1063/1.1728382 [2] Clifton R J, Klopp R W. Pressure-shear plate impact testing[M]//Metals Handbook: Mechanical Testing. OH: American Society for Metals, 1985:230-239. [3] Rosenberg Z, Partom Y, Yaziv D. The use of in-material stress gauges for estimating the dynamic yield strength of shock-loaded solids[J]. Journal of Applied Physics, 1984, 56(1):143-146. doi: 10.1063/1.333737 [4] Asay J R, Chhabildas L C. Determination of the shear strength of shock compressed 6061-T6 aluminum[C]//Meyers M M, Murr L E. Shock Waves and High-strain-rate Phenomena in Metals: Concepts and Application. New York: Plenum Publishing Corp., 1981: 417-431. [5] Asay J R, Chhabildas L C, Kerley G I, et al. High pressure strength of shocked aluminum[M]//Gupta Y M. Shock Waves in Condensed Matter. New York: Plenum Press, 1986: 145-149. [6] Morris C E, Fritz J N, Holian B L. Quasi-elastic high pressure waves in 2024 Al and copper[C]//Nellis W J. Shock Waves in Condensed Matter. AIP, 1982: 382-386. [7] Huang H, AsayJ R. Compressive strength measurements in aluminum for shock compression of the stress range of 4-22 GPa[J]. Journal of Applied Physics, 2005, 98(3):033524. doi: 10.1063/1.2001729 [8] Huang H, Asay J R.Reshock and release response of aluminum single crystal[J]. Journal of Applied Physics, 2007, 101(6):063550. doi: 10.1063/1.2655571 [9] 胡建波, 戴诚达, 俞宇颖, 等.双屈服面法测量金属材料动高压屈服强度的若干改进[J].爆炸与冲击, 2006, 26(6):516-521. doi: 10.3321/j.issn:1001-1455.2006.06.007Hu Jianbo, Dai Chengdai, Yu Yuying, et al. Some improvements of the self-consistent method for measuring the dynamic yield strength of ductile metals[J]. Explosion and Shock Waves, 2006, 26(6):516-521. doi: 10.3321/j.issn:1001-1455.2006.06.007 [10] 胡建波, 谭华, 俞宇颖, 等.铝的动态屈服强度测量及再加载弹性前驱波的形成机理分析[J].物理学报, 2008, 57(1):405- 410. doi: 10.3321/j.issn:1000-3290.2008.01.063Hu Jianbo, Tan Hua, Yu Yuying, et al. Measurements of dynamic yield strength of aluminum alloy and mechanism analysis of elastic precursor during reloading[J]. Acta Physica Sinica, 2008, 57(1):405- 410. doi: 10.3321/j.issn:1000-3290.2008.01.063 [11] Chhabildas L C, Hills C R. Dynamic shock studies of vanadium[C]//Murr L E. Metallurgical Applications of Shock-wave and High-strain-rate Phenomena. New York: Marcel Dekker, 1985: 429-448. [12] Asay J R, Chhabildas L C, Danderkar D P. Shear strength of shock-loaded polycrystalline tungsten[J]. Journal of Applied Physics, 1980, 51(9):4774-4783. doi: 10.1063/1.328309 [13] 华劲松.高温高压下钨合金的本构方程研究[D].北京: 中国工程物理研究院北京研究生部, 1999: 1-118. [14] 张江跃, 谭华, 虞吉林.双屈服法测定93W合金的屈服强度[J].高压物理学报, 1997, 11(4):254-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL704.003.htmZhang Jiangyue, Tan Hua, Yu Jilin. Determination of the yield strength of 93W alloys by using AC techniques[J]. Chinese Journal of High Pressure Physics, 1997, 11(4):254-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL704.003.htm [15] Chhabildas L C, Barker L M, Asay J R, et al. Relationship of fragment size to normalized spall strength for materials[J]. International Journal of Impact Engineering, 1990, 10(1):107-124. doi: 10.1016-0734-743X(90)90052-W/ [16] Chhabildas L C, Wise J L, Asay J R. Reshock and release behavior of beryllium[C]//Nellis W J. Shock Waves in Condensed Matter. AIP, 1982: 422-426. [17] Duffy T S, Ahrens T J. Dynamic compression of an Fe-Cr-Ni alloy to 80 GPa[J]. Journal of Applied Physics, 1997, 82(9):4259-4269. doi: 10.1063/1.366233 [18] Furnish M D, Alexander C S, Brown J L, et al. 2169 steel waveform measurements for equation of state and strength determination[J]. Journal of Applied Physics, 2014, 115(3):033511. doi: 10.1063/1.4862277 [19] Vogler T J, Reinhart W D, Chhabildas L C. Dynamic behavior of boron carbide[J]. Journal of Applied Physics, 2004, 95(8):4173-4183. doi: 10.1063/1.1686902 [20] Vogler T J, Reinhart W D, Chhabildas L C, et al. Hugoniot and strength behavior of silicon carbide[J]. Journal of Applied Physics, 2006, 99(2):023512. doi: 10.1063/1.2159084 [21] 俞宇颖, 习锋, 戴诚达, 等.动高压加载下锆基金属玻璃强度测量[J].爆炸与冲击, 2014, 34(1):1-5. doi: 10.3969/j.issn.1001-1455.2014.01.001Yu Yuying, Xi Feng, Dai Chengdai, et al. Measurement of strength in a Zr-based bulk metallic glass under dynamic high-pressure loading[J]. Explosion and Shock Waves, 2014, 34(1):1-5. doi: 10.3969/j.issn.1001-1455.2014.01.001 [22] Yuan F P, Tsai L, Prakash V, et al. Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression[J]. Journal of Applied Physics, 2008, 103(10), 103537. doi: 10.1063/1.2930995 [23] 王翔.金属材料状态方程精密实验测量技术研究[D].北京: 中国工程物理研究院北京研究生部, 2004: 1-94. [24] Mitchell A C, Nellis W J. Shock compression of aluminum, copper and tantalum[J]. Journal of Applied Physics, 1981, 52(5):3363-3374. doi: 10.1063/1.329160 [25] Weng Jidong, Tan Hua, Wang Xiang, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Appled Physics Letters, 2006, 89(11):111101. doi: 10.1063/1.2335948 [26] 俞宇颖, 习锋, 戴诚达, 等.冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为[J].物理学报, 2012, 61(19):382-387. http://d.old.wanfangdata.com.cn/Periodical/wlxb201219056Yu Yuying, Xi Feng, Dai Chengda, et al. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading[J]. Acta Physica Sinica, 2012, 61(19):382-387. http://d.old.wanfangdata.com.cn/Periodical/wlxb201219056 [27] 谭华.实验冲击波物理导引[M].北京:国防工业出版社, 2007:163-167. [28] Yu Yuying, Tan Hua, Hu Jianbo, et al. Determination of effective shear modulus of shock-compressed LY12 Al from particle velocity profile measurements[J]. Journal of Applied Physics, 2008, 103(10):103529. doi: 10.1063/1.2927492 [29] Hu Jianbo, Zhou Xianming, Dai Chengda, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements[J]. Journal of Applied Physics, 2008, 104(8):083520. doi: 10.1063/1.3003325