Experimental research on explosion parameters of diethyl ether mist
-
摘要: 基于自行研发的20 L二次脉冲气动喷雾多相爆炸测试系统和全散射粒径测量系统,对乙醚液体燃料瞬态雾化云雾场的燃爆参数进行实验研究。通过调节气动压力、设计喷雾剂量,得到了粒径相同、质量浓度不同的乙醚云雾燃爆超压、温度及点火延迟时间等燃爆参数。结果表明,在索特平均直径为22.90 μm的条件下:乙醚云雾与空气混合物的燃爆下限为80.26 g/m3,燃爆上限为417.34 g/m3;最大超压峰值为0.78 MPa,其出现在云雾质量浓度为278.23 g/m3时;最大爆温峰值为1 260 ℃,其出现在云雾质量浓度为228.29 g/m3时;点火延迟时间在燃爆极限范围内呈U型分布。Abstract: The Mei extinction detection system and the self-developed 20 L pulse pneumatic spray multiphase explosion test system were applied to experimentally investigate the explosion parameters of the diethyl ether mist/air mixtures. By regulating pneumatic pressure and designing spray dose, the explosion parameters of the diethyl ether mist/air mixtures with the same particle size and different mass concentrations were obtained including explosion overpressure, explosion temperature and ignition delay time. The results show that when the Sauter mean diameter of diethyl ether mist is 22.90 μm, the lower explosion limit of diethyl ether mist/air mixtures is 80.261 g/m3, the upper explosion limit is 417.34 g/m3, the highest peak overpressure is 0.78 MPa which occurs with the mass concentration as 278.23 g/m3, the highest peak temperature is 1 260 ℃ which occurs with the mass concentration as 228.29 g/m3, and the ignition delay time takes on a U-shaped distribution in the explosion limit range.
-
表 1 2种测量系统的测量结果
Table 1. Measured results by two measuring systems
测量系统 n 测量结果 D10/μm D50/μm D90/μm D32/μm 实时喷雾激光粒度仪 30 最大值 26.50 52.33 78.88 22.45 最小值 22.52 43.63 65.24 18.45 平均值 24.51 47.98 72.06 20.45 全散射粒径测量系统 30 最大值 28.68 55.63 79.89 23.12 最小值 21.74 44.81 66.07 17.88 平均值 25.21 50.22 72.98 20.50 表 2 乙醚云雾质量浓度和粒径实验数据
Table 2. Experimental data of particle size and mass concentration of diethyl ether mist
pp/MPa pv/MPa md/(g·m-3) ml/(g·m-3) 平均值 D32/μm ρ/(g·m-3) 0.80 0.104 713.40 142.68 23.16 570.72 0.75 0.104 642.06 96.31 23.30 545.75 0.70 0.103 570.72 114.14 22.07 456.58 0.60 0.103 535.05 117.71 22.10 417.34 0.50 0.103 499.38 124.85 21.73 374.54 0.50 0.103 428.04 107.01 23.72 321.03 0.50 0.103 356.70 78.47 21.52 278.23 0.50 0.103 285.36 57.07 23.35 228.29 0.50 0.103 214.02 53.51 22.90 160.52 0.45 0.102 142.68 35.67 24.04 107.01 0.45 0.102 107.01 26.75 23.55 80.26 0.40 0.102 71.34 14.27 23.36 57.07 -
[1] 白春华, 梁慧敏, 李建平.云雾爆轰[M].北京:科学出版社, 2012:1. [2] 姚干兵, 解立峰, 刘家骢.液体碳氢燃料云雾爆轰特性的实验研究[J].爆炸与冲击, 2006, 26(6):543-549. doi: 10.3321/j.issn:1001-1455.2006.06.012Yao Ganbing, Xie Lifeng, Liu Jiacong. Experimental study on detonation characteristics of liquid fuel-air mixtures[J]. Explosion and Shock Waves, 2006, 26(6):543-549. doi: 10.3321/j.issn:1001-1455.2006.06.012 [3] 沈晓波, 鲁长波, 李斌, 等.液体燃料云雾爆轰参数实验[J].爆炸与冲击, 2012, 32(1): 108-112. doi: 10.11883/1001-1455(2012)01-0108-05Shen Xiaobo, Lu Changbo, Li Bin, et al. An experimental study of detonation parameters of liquid fuel drops cloud[J]. Explosion and Shock Waves, 2012, 32(1):108-112. doi: 10.11883/1001-1455(2012)01-0108-05 [4] Liu Qingming, Bai Cunhua, Dai Wenxi, et al. Deflagration-to-detonation transition in isopropyl nitrate mist/air mixtures[J]. Combustion, Explosion, and Shock Waves, 2011, 47(4):448-456. doi: 10.1134/S0010508211040083 [5] Liu Qingming, Bai Chunhua, Jiang Li, et al. Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures[J]. Combustion and Flame, 2010, 157(1):106-117. doi: 10.1016/j.combustflame.2009.06.026 [6] Moen I. Transition to detonation in fuel-air explosive clouds[J]. Journal of Hazardous Materials, 1993, 33(2):159-192. doi: 10.1016/0304-3894(93)85052-G [7] Stamps D W, Slezak S E, Tieszen S R. Observations of the cellular structure of fuel-air detonations[J]. Combustion and Flame, 2006, 144(1):289-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f00242c3d2a0038667594b9a79b3ab6 [8] Zhang Qi, Li Wei, Zhang Shixi. Effects of spark duration on minimum ignition energy for methane/air mixture[J]. Process Safety Progress, 2011, 30(2):154-156. doi: 10.1002/prs.10438 [9] Liu Xueling, Zhang Qi. Influence of initial pressure and temperature on flammability limits of hydrogen-air[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6774-6782. doi: 10.1016/j.ijhydene.2014.02.001 [10] Liu Xueling, Zhang Qi, Ma Qiuju, et al. Limiting explosible concentration of hydrogen-oxygen-helium mixtures related to the practical operational case[J]. Journal of Loss Prevention in the Process Industries, 2014, 29:240-244. doi: 10.1016/j.jlp.2014.03.012 [11] Bai Chunhua, Zhang Bo, Xiu Guangli, et al. Deflagration to detonation transition and detonation structure in diethyl ether mist/aluminum dust/air mixtures[J]. Fuel, 2013, 107(9):400-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e51ef36fd40ff0c9f59473f915e60777 [12] Zhang Qi, Li Wei, Tan Rumei, et al. Combustion parameters of gaseous epoxypropane/air in a confined vessel[J]. Fuel, 2013, 105(2):512-517. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c1395bed882f60f782bdc2aac14ecd4 [13] Zhang Qi, Li Wei, Zhang Shixi. Effects of spark duration on minimum ignition energy for methane/air mixture[J]. Process Safety Progress, 2011, 30(2):154-156. doi: 10.1002/prs.10438 [14] Liu Xueling, Huang Ying, Wang Yue, et al. Critical explosible oxygen concentration of methanol-saturated vapor/O2/N2 mixtures at elevated temperatures and pressures[J]. Industrial & Engineering Chemistry Research, 2014, 53(13):5617-5621. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1127cc5e915da3ea0d4fe7f2e6e8b975