Experimental study for effects of water and its container on explosion loading near explosive
-
摘要: 为研究用水包围炸药的方式对爆炸载荷的作用机理,在两端开口的钢筒内进行了水直接包覆炸药的爆炸实验,利用光纤位移干涉仪获取了钢筒外壁的径向速度和动态变形。结果表明:不同于无水爆炸,爆轰产物通过水的“裂缝”在空气中形成冲击波,造成该冲击波出现时间更晚、强度更低、持续时间更长,并要求相应的数值模拟采用二维以上的计算模型;盛水结构的材料密度越低、厚度越小对爆炸载荷的影响越小。Abstract: To explore the mitigating mechanism of detonation of a high explosive surrounded by water, experiments of explosion with and without water were carried out in an open-ended steel cylinder. The particle velocity and the displacement of the outer surface of the cylinder were obtained by an optical-fiber displacement interferometer. The results indicate that shock wave will not be formed in air by the product of detonation until the water surrounding the product is separated to a fissure, which causes the later appearance and lower magnitude of shock wave with a longer duration compared with an explosion without water. It means that two-dimensional or three-dimensional numerical models are required to conduct the simulations of explosions with water. It is also observed that the augment of blast load decreases with the decrease of the density of the water container as well as its thickness.
-
Key words:
- mechanics of explosion /
- blast load /
- water /
- steel cylinder /
- particle velocity
-
表 1 无水和置水爆炸实验结果
Table 1. Measured results of explosion without and with water
me/g mw/g cc/μs vp/(m·s-1) ss/mm γ/% 雷管爆炸 药球表面 钢筒外壁 60 0 0 39.6 46.0 24.6 0.29 0.47 60 120(玻璃) 132.8 3.12* 5.0*(有裂缝) 60 120(PVC) 0 39.6 72.1 69.9 1.94 3.1(有裂缝) 120 0 73Δ 2.28Δ 4.2Δ 180 0 110Δ 5.15Δ 8.3Δ *指按峰值变形获得的数据;Δ指轴向长度为600 mm的钢筒用探针测量的数据,仅作参考。 -
[1] Keenan W A, Wager P C. Mitigation of confined explosion effects by placing water in proximity of explosions[C]//Proceedings of the 25th DoD Explosives Safety Seminar. Anaheim, CL, USA, 1992. [2] Forsen R, Hansson H, Carlberg C. Small scale tests on mitigation effects of water in a model of the KLOTZ Club tunnel in Aelvdalen[C]//Proceedings of the 27th DoD Explosives Safety Seminar. Las Vegas, USA, 1997. [3] Chabin P, Pitiot F. Blast wave mitigation by water[C]//Proceedings of the 28th DoD Explosives Safety Seminar. Orlando, FL, USA, 1998. [4] 毛益明, 方秦, 张亚栋, 等.水体与混凝土防爆墙消波减爆作用对比研究[J].兵工学报, 2009, 30 (S2):84-89. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2009S2018.htmMao Yiming, Fang Qin, Zhang Yadong, et al. Comparison investigation on mitigation effect of water and concrete explosion-proof walls[J]. Acta Armamentarii, 2009, 30(S2):84-89. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2009S2018.htm [5] Hansson H, Forsen R. Mitigation effects of water on ground shock: Large scale testing in alvdalen[R]. PB97206965, 1997. [6] 杨军, 王克逸, 徐海斌, 等.光纤位移干涉仪的研制及其Hopkinson压杆实验中的应用[J].红外与激光工程, 2013, 42(1):102-107. doi: 10.3969/j.issn.1007-2276.2013.01.019Yang Jun, Wang Keyi, Xu Haibin, et al. Development of an optical-fiber displacement interferometer and its application in Hopkinson pressure bar experiment[J]. Infrared and Laser Engineering, 2013, 42(1):102-107. doi: 10.3969/j.issn.1007-2276.2013.01.019 [7] 张德志, 钟方平, 王占江, 等.柱形爆炸容器内壁载荷研究实验技术[C]//第四届全国爆炸力学实验技术交流会论文集.福建: 中国力学学会爆炸力学实验技术专业组, 2006: 237-241. [8] 秦学军, 张德志, 杨军, 等.内部爆炸作用下钢筒变形过程的电探针测量技术[J].爆炸与冲击, 2014, 34(1):115-119. doi: 10.3969/j.issn.1001-1455.2014.01.020Qin Xuejun, Zhang Dezhi, Yang Jun, et al. Electric probe measurement technique on deformation process of cylindrical steel shell under inside-explosion loading[J]. Explosion and Shock Waves, 2014, 34(1):115-119. doi: 10.3969/j.issn.1001-1455.2014.01.020 [9] 马利, 胡洋, 辛键, 等.圆柱形爆炸容器绝热剪切瞬态失效过程[J].爆炸与冲击, 2012, 32(2):136-142. doi: 10.3969/j.issn.1001-1455.2012.02.004Ma Li, Hu Yang, Xin Jian, et al. Transient failure process of explosion containment vessels subjected to adiabatic shear[J]. Explosion and Shock Waves, 2012, 32(2):136-142. doi: 10.3969/j.issn.1001-1455.2012.02.004 [10] 刘文祥, 张德志, 钟方平, 等.球形和等长径圆柱装药在爆炸近区内载荷差异的实验研究[J].爆炸与冲击, 2013, 33(3):330-336. doi: 10.3969/j.issn.1001-1455.2013.03.019Liu Wenxiang, Zhang Dezhi, Zhong Fangping, et al. Experiment investigations on normal reflected blast wave near the spherical explosive[J]. Explosion and Shock Waves, 2013, 33(3):330-336. doi: 10.3969/j.issn.1001-1455.2013.03.019 [11] 王礼立.应力波基础[M].北京:国防工业出版社, 2010:228-234. [12] 奥尔连科Л П.爆炸物理学[M].孙承纬, 译.北京: 科学出版社, 2011: 606-610, 1330-1331. [13] 徐海斌, 张德志, 秦学军, 等.炸药周围水层对空气冲击波反射超压影响的实验研究[J].兵工学报, 2014, 35(7):1027-1031. doi: 10.3969/j.issn.1000-1093.2014.07.014