冲击加载下样品软回收过程中的侧向稀疏效应

胡秋实 赵锋 李克武 傅华 宋振飞

胡秋实, 赵锋, 李克武, 傅华, 宋振飞. 冲击加载下样品软回收过程中的侧向稀疏效应[J]. 爆炸与冲击, 2016, 36(4): 532-540. doi: 10.11883/1001-1455(2016)04-0532-09
引用本文: 胡秋实, 赵锋, 李克武, 傅华, 宋振飞. 冲击加载下样品软回收过程中的侧向稀疏效应[J]. 爆炸与冲击, 2016, 36(4): 532-540. doi: 10.11883/1001-1455(2016)04-0532-09
Hu Qiushi, Zhao Feng, Li Kewu, Fu Hua, Song Zhenfei. Lateral release effect in shock-loaded specimens during soft recovery process[J]. Explosion And Shock Waves, 2016, 36(4): 532-540. doi: 10.11883/1001-1455(2016)04-0532-09
Citation: Hu Qiushi, Zhao Feng, Li Kewu, Fu Hua, Song Zhenfei. Lateral release effect in shock-loaded specimens during soft recovery process[J]. Explosion And Shock Waves, 2016, 36(4): 532-540. doi: 10.11883/1001-1455(2016)04-0532-09

冲击加载下样品软回收过程中的侧向稀疏效应

doi: 10.11883/1001-1455(2016)04-0532-09
基金项目: 

国家自然科学基金项目 11272296

中国工程物理研究院面上基金项目 2012B0201017

冲击波物理与爆轰物理重点实验室基金项目 2012-专-06

详细信息
    作者简介:

    胡秋实(1984—),男,博士,助理研究员

    通讯作者:

    赵锋,ifpzf@163.com

  • 中图分类号: O347.3

Lateral release effect in shock-loaded specimens during soft recovery process

  • 摘要: 通过数值模拟, 计算冲击加载下样品经历一维应变加载过程和侧向稀疏过程产生的塑性功, 给出试样内部从冲击加载开始到进入回收桶前全过程的应力随时间变化的历程。结果表明:侧向稀疏过程开始后,样品在径向汇聚波的作用下受循环拉、压载荷作用,拉压循环的振幅在中等冲击压力下达到最大。如果振幅超过了材料的层裂强度,样品中心将发生拉伸破坏不能完整回收。侧向稀疏与一维应变加载产生的塑性功之比随冲击速度的增加而减小。在冲击速度为某临界值时,侧向稀疏产生的塑性功与一维应变加载产生的塑性功相等。在一定的冲击速度下,采用低初始屈服应力的材料可减轻侧向稀疏效应。对理想塑性材料的理论分析表明,侧向稀疏与一维应变加载产生的塑性功之比随冲击速度与屈服强度比值的增大而减小,与数值模拟结果一致。
  • 图  1  软回收装置示意图

    Figure  1.  Schematics diagram of two types of soft recovery assembly

    图  2  冲击压力为2.4 GPa时样品内部不同时刻的径向应力状态

    Figure  2.  Radial stress state of specimen under an impact pressure of 2.4 GPa at different times

    图  3  层裂后的应力状态

    Figure  3.  Stress state after spallation

    图  4  样品、层裂片的速度时程曲线

    Figure  4.  Velocity histories of specimen and spall plate

    图  5  冲击压力为2.4 GPa时样品的纵向应力纵向应变关系

    Figure  5.  Relationship between longitudinal stress and longitudinal strain under an impact pressure of 2.4 GPa

    图  6  冲击压力为2.4 GPa时样品的纵向应力径向应力关系

    Figure  6.  Relationship between longitudinal stress and radial stress under an impact pressure of 2.4 GPa

    图  7  冲击压力为2.4 GPa时样品中心处应力时程曲线

    Figure  7.  Histories of stress at the axis of the specimen under an impact pressure of 2.4 GPa

    图  8  不同冲击压力下样品中心处有效应力时程曲线

    Figure  8.  Histories of effective stress at the axis of the specimen under different impact pressures

    图  9  不同冲击压力下样品中心处等效塑性应变时程曲线

    Figure  9.  Histories of effective plastic strain at the axis of the specimen under different impact pressures

    图  10  冲击压力2.4 GPa时样品中心径向应力时程曲线

    Figure  10.  Histories of radial stress at the axis of the specimen under an impact pressure of 2.4 GPa

    图  11  冲击压力2.4 GPa时样品中心等效塑性应变时程曲线

    Figure  11.  Histories of effective plastic strain at the axis of the specimen under an impact pressure of 2.4 GPa

    图  12  不同冲击速度下样品中心处一维应变加载和侧向稀疏产生的塑性功

    Figure  12.  Plastic works generated at the axis of the specimens during uniaxial-strain loading and lateral release at different impact velocities

  • [1] Hartman W F.Determination of unloading behavior of uniaxially strained 6061 T6 Aluminum from residual strain measurements[J].Journal of Applied Physics, 1964, 35(7):2090-2096. doi: 10.1063/1.1702796
    [2] Koller D D, Hixson R S, Gray Ⅲ G T, et al.Influence of shock-wave profile shape on dynamically induced damage in high-purity copper[J].Journal of Applied Physics, 2005, 98(10):103518. doi: 10.1063/1.2128493
    [3] Escobedo J P, Dennis-Koller D, Cerreta E K, et al.Effects of grain size and boundary structure on the dynamic tensile response of copper[J].Journal of Applied Physics, 2011, 110(3):033513. doi: 10.1063/1.3607294
    [4] Gray Ⅲ G T, Follansbee P S, Frantz C E.Effect of residual strain on the substructure development and mechanical response of shock-loaded copper[J].Materials Science and Engineering A, 1989, 111(89):9-16.
    [5] Follansbee P S, Gray Ⅲ G T.Dynamic deformation of shock prestrained copper[J].Materials Science and Engineering A, 1991, 138(1):23-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026527003
    [6] Blumenthal W R, Gray Ⅲ G T, Claytor T N.Response of aluminium-infiltrated boron carbide cermets to shock wave loading[J].Journal of Materials Science, 1994, 29(17):4567-4576. doi: 10.1007/BF00376280
    [7] Bourne N K, Gray Ⅲ G T, Millett J C F.On the shock response of cubic metals[J].Journal of Applied Physics, 2009, 106(9):091301. doi: 10.1063/1.3218758
    [8] Bourne N K, Millett J C F, Gray Ⅲ G T.On the shock compression of polycrystalline metals[J].Journal of Materials Science, 2009, 44(13):3319-3343. doi: 10.1007/s10853-009-3394-y
    [9] Bourne N K, Gray Ⅲ G T.Soft-recovery of shocked polymers and composites[J].Journal of Physics D:Applied Physics, 2005, 38(19):3690-3694. doi: 10.1088/0022-3727/38/19/018
    [10] Mogilevsky M A, Newman P E.Mechanisms of deformation under shock loading[J].Physics Reports, 1983, 97(6):357-393. doi: 10.1016/0370-1573(83)90030-3
    [11] Stevens A L, Jones O E.Radial stress release phenomena in plate impact experiments:Compression-release[J].Journal of Applied Mechanics, 1972, 39(2):359-366. doi: 10.1115/1.3422683
    [12] Bertholf L D, Karnes C H.Axisymmetric elastic-plastic wave propagation in 6061-T6 Aluminum bars of finite length[J].Journal of Applied Mechanics, 1969, 36(3):533-541. doi: 10.1115/1.3564713
    [13] 王继海.二维非定常流和激波[M].北京:科学出版社, 1994.
    [14] 王礼立.应力波基础[M].2版.北京:国防工业出版社, 2005.
    [15] Srinivasan M G, Ting T C T.Cylindrical elastic-plastic waves due to discontinuous loading at a circular cavity[J].International Journal of Solids and Structures, 1975, 11(9):1057-1077. doi: 10.1016/0020-7683(75)90048-7
    [16] Steinberg D J, Cochran S G, Guinan M W.A constitutive model for metals applicable at highstrain rate[J].Journal of Applied Physics, 1980, 51(3):1498-1504. doi: 10.1063/1.327799
    [17] 彭建祥.Johnson-Cook本构模型和Steinberg本构模型的比较研究[D].绵阳: 中国工程物理研究院, 2006.
    [18] Molinari A, Ravichandran G.Fundamental structure of steady plastic shock waves in metals[J].Journal of Applied Physics, 2004, 95(4):1718-1732. doi: 10.1063/1.1640452
    [19] Murr L E, Kuhlmann-wilsdorf D.Experimental and theoretical observations on the relationship between dislocation cell size, dislocation density, residual hardness, peak pressure and pulse duration in shock-loaded nickel[J].Acta Metallurgica, 1978, 26(5):847-857. doi: 10.1016/0001-6160(78)90034-2
    [20] 王肖钧, 胡秀章, 李永池.硬化材料中弹塑性柱面波的数值方法[J].爆炸与冲击, 1991, 11(2):97-105. http://www.bzycj.cn/article/id/10775

    Wang Xiaojun, Hu Xiuzhang, Li Yongchi.A computational method of cylindrical elastic-plastic waves in strain hardening materials[J].Explosion and Shock Waves, 1991, 11(2):97-105. http://www.bzycj.cn/article/id/10775
    [21] 李永池, 谭福利, 姚磊, 等.含损伤材料的热粘塑性本构关系及其应用[J].爆炸与冲击, 2004, 24(4):289-298. http://www.bzycj.cn/article/id/9958

    Li Yongchi, Tan Fuli, Yao Lei, et al. Thermo-viscoplastic constitutive relation of damaged materials with application[J].Explosion and Shock Waves, 2004, 24(4):289-298. http://www.bzycj.cn/article/id/9958
    [22] Johnson G R, Cook W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.Hague, Netherlands, 1983.
  • 加载中
图(12)
计量
  • 文章访问数:  4300
  • HTML全文浏览量:  1224
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-22
  • 修回日期:  2014-11-18
  • 刊出日期:  2016-07-25

目录

    /

    返回文章
    返回