Detonation wave structure of CL-20 composite explosive
-
摘要: 基于爆轰数值模拟计算,分析了CL-20混合炸药爆轰反应的特征,设计了炸药与窗口的界面粒子速度测量实验装置;采用激光干涉法,测量了C-1炸药(CL-20/粘合剂/94/6)与窗口的界面粒子速度; 运用先求导、再分段拟合的方法,对界面粒子速度随时间的变化曲线进行了数据处理,确定了炸药爆轰CJ点对应的时间位置;根据CJ点对应的粒子速度,计算获得了炸药的爆轰反应区宽度和CJ爆轰压力。结果显示:密度为1.943 g/cm3的C-1炸药的爆轰反应时间为38 ns,CJ压力为34.2 GPa。Abstract: The detonation reaction of CL-20 composite explosive was numerically simulated to analyze its detonation reaction characteristics, and then an experimental setup was designed for measuring the particle velocity at the explosive-window interface. The laser interference method was used to measure the particle velocity at the interface between the LiF window and the C-1 explosive, and ninety-four percent of the C-1 explosive is CL-20 and six percent is binder by weight. And the measured particle velocity-time curves were processed by the method of derivation and piecewise fitting to determine the corresponding CJ point. According to the corresponding CJ velocity, the reaction time and CJ pressure were determined. The detonation reaction time of the C-1 explosive with the density of 1.943 g/cm3 is 38 ns and the CJ pressure is 34.2 GPa.
-
表 1 炸药爆轰反应区参数
Table 1. Parameters for reaction zones of explosivess
炸药 ρ/(g·cm-3) 方法 tCJ/ns x0/mm pCJ/GPa C-1 1.943 实验 38 0.27 34.2 LX-19 1.942 计算 40 0.28 35.2 -
[1] Seitz W L, Stacy H L, Wackerle J. Detonation reaction zone studies on TATB explosives[C]//Proceedings of 8th Symposium (International) on Detonation. Albuquerque, NM, USA, 1985. [2] Sheffield S A, Bloomquist D D, Tarver C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. The Journal of Chemical Physics, 1984, 80(8):3831-3844. doi: 10.1063/1.447164 [3] 韩勇, 龙新平, 刘柳, 等.炸药化学反应区结构试验研究[C]//全国危险物质与安全应急技术研讨会论文集: 上.2011: 230-235. [4] 彭其先, 马如超.VISAR测试技术研究炸药反应区厚度[J].流体力学实验与测量, 2003, 17(1):43-45. doi: 10.3969/j.issn.1672-9897.2003.01.011Peng Qixian, Ma Ruchao. VISAR used in explosive reaction zone measurement[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(1):43-45. doi: 10.3969/j.issn.1672-9897.2003.01.011 [5] Loboiko B G, Lubyatinsky S N. Reaction zones of detonating solid explosives[J]. Combustion, Explosion, and Shock Waves, 2000, 36(6):716-733. doi: 10.1023/A:1002898505288 [6] Livemore Software Technology Corporation. LS-DYNA users' manual[M]. Version 971. California: Lawerence Livermore National Laboratory, 2007: 15.11-15.12. [7] Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12):2362-2372. doi: 10.1063/1.862940 [8] Tarver C M, Simpson R L, Urtiew P A. Shock initiation of an ε-CL-20-estane formulation[J]. AIP Conference Proceedings, 1996, 370(1):891-894. [9] 李雪梅, 俞宇颖, 张林, 等. <100>LiF的低压冲击响应和1 550 nm波长下的窗口速度修正[J].物理学报, 2012, 61(15):414-419.Li Xuemei, Yu Yuying, Zhang Lin, et al. Elasic-plastic response of shocked <100>LiF and its window correction under 1 550 nm wavelength[J]. Acta Physica Sinica, 2012, 61(15):414-419. [10] 赵万广, 周显明, 李加波, 等.LiF单晶的高压折射率及窗口速度的修正[J].高压物理学报, 2014, 28(5):571-576. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201405011.htmZhao Wanguang, Zhou Xianming, Li Jiabo, et al. Refractive index of LiF single crystal at high pressure and its window correction[J]. Chinese Journal of High Pressure Physics, 2014, 28(5):571-576. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201405011.htm [11] Lubyatinsky S N, Loboiko B G. Density effect on detonation reaction zone length in solid explosives[J]. AIP Conference Proceedings, 1998, 429(1):743-746. [12] 陈清畴, 蒋小华, 李敏, 等.HNS-Ⅳ炸药的点火增长模型[J].爆炸与冲击, 2012, 32(3):328-332. doi: 10.3969/j.issn.1001-1455.2012.03.017Chen Qingchou, Jiang Xiaohua, Li Min, et al. Ignition and growth reactive flow model for HNS-Ⅳ explosive[J]. Explosion and Shock Waves, 2012, 32(3):328-332. doi: 10.3969/j.issn.1001-1455.2012.03.017