• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

强动载作用下孔洞汇合对延性金属层裂损伤演化过程的影响

张凤国 周洪强 胡晓棉 王裴 邵建立 冯其京

齐辉, 陈洪英, 张希萌, 赵元博, 项梦. 半空间内含有部分脱胶的椭圆夹杂及圆孔对SH波的散射[J]. 爆炸与冲击, 2018, 38(6): 1344-1352. doi: 10.11883/bzycj-2017-0142
引用本文: 张凤国, 周洪强, 胡晓棉, 王裴, 邵建立, 冯其京. 强动载作用下孔洞汇合对延性金属层裂损伤演化过程的影响[J]. 爆炸与冲击, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07
QI Hui, CHEN Hongying, ZHANG Ximeng, ZHAO Yuanbo, XIANG Meng. Scattering of SH-wave by elliptical inclusion with partial debond curve and circular cavity in half space[J]. Explosion And Shock Waves, 2018, 38(6): 1344-1352. doi: 10.11883/bzycj-2017-0142
Citation: Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07

强动载作用下孔洞汇合对延性金属层裂损伤演化过程的影响

doi: 10.11883/1001-1455(2016)05-0596-07
基金项目: 

国家自然科学基金项目 U1530261

国家自然科学基金项目 11372052

国家自然科学基金项目 11572054

中国工程物理研究院科学技术发展基金项目 2013B0101013

详细信息
    作者简介:

    第一作者:张凤国(1969—),男,硕士,研究员,zhang_fengguo@iapcm.ac.cn

  • 中图分类号: O347.3

Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading

  • 摘要: 针对强动载作用下延性金属的层裂问题,在分析孔洞之间几何关联的基础上,定义了一个新的耦合损伤及孔洞几何信息的孔洞汇合判定方法,同时,基于能量守恒原理,解析了孔洞汇合对损伤快速增长影响的物理机理.通过分析数值计算结果和对比相关文献的实验可知:孔洞汇合后不仅引起损伤增长,而且导致了损伤材料内部微孔洞数目的减少、孔洞平均尺寸的增加。
  • 图  1  孔洞汇合实验结果

    Figure  1.  Void coalescence by direct impingement in tantalum

    图  2  孔洞间的几何关系

    Figure  2.  Porous material model

    图  3  孔洞相对大小与孔洞汇合临界损伤度关系

    Figure  3.  Critical damage for void coalescence vs. relative difference in size between two voids

    图  4  孔洞间距离与孔洞汇合临界损伤度关系

    Figure  4.  Critical damage for void coalescence vs. distance between two voids

    图  5  孔洞汇合对孔洞增长的影响

    Figure  5.  Influences of void coalescence on void size

    图  6  孔洞汇合对损伤发展的影响

    Figure  6.  Influences of void coalescence on spall damage

    图  7  晶粒尺寸、孔洞汇合对自由面速度曲线的影响

    Figure  7.  Influences of void coalescence and grain size on free surface velocities

    图  8  孔洞汇合临界损伤度对自由面速度曲线的影响

    Figure  8.  Influences of critical damage for void coalescence on free surface velocities

    表  1  损伤材料内部孔洞数及孔洞大小的统计结果

    Table  1.   Damage statistics

    dg /μm N dv
    实验 计算 实验 计算
    30 236 11.460 38.1 12.17
    0.044(考虑汇合) 37.12(考虑汇合)
    60 363 3.236 22.7 22.36
    100 267 1.421 33.0 34.51
    200 111 0.566 55.1 42.60
    下载: 导出CSV
  • [1] Thomason P F. A view on ductile-fracture modelling[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9):1105-1122. https://www.researchgate.net/publication/229518515_A_View_on_ductile-fracture_modelling
    [2] Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110(3):033513. doi: 10.1063/1.3607294
    [3] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1):157-169. doi: 10.1016/0001-6160(84)90213-X
    [4] Benzerga A A. Micromechanics of coalescence in ductile fracture[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(6):1331-1362. doi: 10.1016/S0022-5096(01)00125-9
    [5] Gao X, Kim J. Modelling of ductile fracture: Significance of void coalescence[J]. International Journal of Solids and Structures, 2006, 43(20):6277-6293. doi: 10.1016/j.ijsolstr.2005.08.008
    [6] 黄筑平, 杨黎明, 潘客麟.材料的动态损伤和失效[J].力学进展, 1993, 23(4):433-467. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201304023

    Huang Zhuping, Yang Liming, Pan Keling. Dynamic damage and failure of materials[J]. Adavances in Mechanics, 1993, 3(4):433-467. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201304023
    [7] Pardoen T, Hutchinson J W. An extended model for void growth and coalescence[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(12):2467-2512. doi: 10.1016/S0022-5096(00)00019-3
    [8] Horstemeyer M F, Matalanis M M, Sieber A M, et al. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence[J]. International Journal of Plasticity, 2000, 16(7):979-1015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b37e93469f2922e87ae03d47e0ed954
    [9] Seppala E T, Belak J, Rudd R E. Three-dimensional molecular dynamic simulation of void coalescence during dynamic fracture of ductile metals[J]. Physics Review: B, 2005, 71(6):064112. doi: 10.1103/PhysRevB.71.064112
    [10] Thomason P F. Ductile spallation fracture and the mechanics of void growth and coalescence under shock loading conditions[J]. Acta Materials, 1999, 47(13):3633-3646. doi: 10.1016/S1359-6454(99)00223-2
    [11] Tonks D L, Zurek A K, Thissell W R. Coalescence rate model for ductile damage in metals[J]. Journal de Physique Ⅳ France, 2003, 110:893-898. doi: 10.1051/jp4:20020807
    [12] Pardoen T, Scheyvaerts F, Tekoglu C, et al. Recent progress in micromechanics-based modeling of void coalescence[C]//The SEM Annual Conference. New Mexico, Albuquerque, USA, 2009.
    [13] Feng J P, Jing F Q, Zhang G R. Dynamic ductile fragmentation and the damage function model[J]. Journal of Applied Physics, 1997, 81(6):2575-2578. doi: 10.1063/1.363921
    [14] Jacques N, Mercier S, Molinari A. Void coalescence in a porous solid under dynamic loading conditions[J]. International Journal of Fravture, 2012, 173(2):203-213. doi: 10.1007/s10704-012-9683-5
    [15] Hosokawa A, Wilkinson D S, Kang J D, et al. Void growth and coalescence in model materials investigated by high-resolution X-ray microtomography[J]. International Journal of Fracture, 2013, 181(1):51-66. doi: 10.1007/s10704-013-9820-9
    [16] Hosokawa A, Wilkinson D S, Kang J D, et al. Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography[J]. Acta Materialia, 2013, 61(4):1021-1036. doi: 10.1016/j.actamat.2012.08.002
    [17] Llorca F, Roy G. Metallurgical investigation of dynamic damage in tantalum[C]//13th APS Topical Conference on Shock Compression of Condensed Matter. Portland, Oregon, 2003: 589-592.
    [18] Lii G T G, Bourne N K, Vecchio K S, et al. Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel[J]. International Journal of Fracture, 2010, 163(1):243-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad2df2e3a2e2ca5bf75978c7513272d1
    [19] Venkert A, Guduru P R, Ravichandran G. Effect of loading rate on fracture morphology in a high strength ductile steel[J]. Journal of Engineering Materials and Technology, 2001, 123(3):261-267. doi: 10.1115/1.1371231
    [20] Brown L M, Embury J D. The initiation and growth of void at second phase particles[C]//3rd International Conference on the Strength of Metals and Alloys. London, England, 1973: 164-169.
    [21] Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4):2812-2825. doi: 10.1063/1.329011
    [22] Zhang F G, Zhou H Q, Hu J, et al. Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper[J]. Chinese Physics: B, 2012, 21(9):094601. doi: 10.1088/1674-1056/21/9/094601
    [23] Jacques N, Mercier S, Molinari A. Effects of microscale inertiaon dynamic ductile crack growth[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(4):665-690. doi: 10.1016/j.jmps.2011.12.010
    [24] 张凤国, 周洪强.晶粒尺度对延性金属材料层裂损伤的影响[J].物理学报, 2013, 62(16):164601. doi: 10.7498/aps.62.164601

    Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62(16):164601. doi: 10.7498/aps.62.164601
    [25] Trivedi P B, Asay J R, Gupta Y M, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. Journal of Applied Physics, 2007, 102(8):083513. doi: 10.1063/1.2798497
  • 期刊类型引用(3)

    1. 赵元博, 程玉朕, 韩坤. SH波入射直角域中含椭圆孔的动力分析. 固体力学学报. 2025(04) 百度学术
    2. 屈恩相,张景颢,王伟业,胡兴森,王浩宁,徐静怡,李聪. 镜像法求解SH波散射问题的应用综述. 安徽建筑. 2024(07): 115-117 . 百度学术
    3. 李新平,汪洋,许明楠,王刚,黄俊红. 时序控制断裂爆破中后爆孔的动力响应分析. 应用力学学报. 2020(06): 2513-2519+2702 . 百度学术

    其他类型引用(2)

  • 加载中
推荐阅读
剪切增稠液填充蜂窝夹芯板的低速冲击响应
李雨薇 等, 爆炸与冲击, 2025
冲击荷载下含铜矿岩能量耗散的数值模拟
左庭 等, 爆炸与冲击, 2025
反射爆炸应力波作用下动静裂纹的贯通机理
周星源 等, 爆炸与冲击, 2025
脉冲载荷下加筋圆板的各向同性快速等效方法
焦重熙 等, 爆炸与冲击, 2024
5种规格金刚石圆锯片的行波振动分析及优化
GAO Xianyi et al., 金刚石与磨料磨具工程, 2024
常规土类剪切波速与埋深经验公式的可靠性评价
卢大伟 等, 吉林大学学报(地球科学版), 2024
上土下岩地层中平面sh波的传播特性分析
周俊 等, 高压物理学报, 2022
Functional and evolutionary significance of unknown genes from uncultivated taxa
Rodriguez del Rio, Alvaro et al., NATURE, 2024
Analysis of the size effect on the penetration depth of earth-penetrating projectiles and practical calculating formula
HE Yong et al., EXPLOSION AND SHOCK WAVES, 2025
Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads
WU Hao et al., EXPLOSION AND SHOCK WAVES, 2025
Powered by
图(8) / 表(1)
计量
  • 文章访问数:  5958
  • HTML全文浏览量:  2461
  • PDF下载量:  708
  • 被引次数: 5
出版历程
  • 收稿日期:  2015-03-11
  • 修回日期:  2016-01-20
  • 刊出日期:  2016-09-25

目录

    /

    返回文章
    返回