基于CE/SE方法模拟空气中RDX-Al悬浮粉尘的两相爆轰

昝文涛 洪滔 董贺飞

昝文涛, 洪滔, 董贺飞. 基于CE/SE方法模拟空气中RDX-Al悬浮粉尘的两相爆轰[J]. 爆炸与冲击, 2016, 36(5): 603-610. doi: 10.11883/1001-1455(2016)05-0603-08
引用本文: 昝文涛, 洪滔, 董贺飞. 基于CE/SE方法模拟空气中RDX-Al悬浮粉尘的两相爆轰[J]. 爆炸与冲击, 2016, 36(5): 603-610. doi: 10.11883/1001-1455(2016)05-0603-08
Zan Wentao, Hong Tao, Dong Hefei. Numerical simulation of two-phase detonation of suspending RDX-Al dust in air with CE/SE[J]. Explosion And Shock Waves, 2016, 36(5): 603-610. doi: 10.11883/1001-1455(2016)05-0603-08
Citation: Zan Wentao, Hong Tao, Dong Hefei. Numerical simulation of two-phase detonation of suspending RDX-Al dust in air with CE/SE[J]. Explosion And Shock Waves, 2016, 36(5): 603-610. doi: 10.11883/1001-1455(2016)05-0603-08

基于CE/SE方法模拟空气中RDX-Al悬浮粉尘的两相爆轰

doi: 10.11883/1001-1455(2016)05-0603-08
详细信息
    作者简介:

    昝文涛(1988—), 男, 博士研究生

    通讯作者:

    洪滔, hongtao@iapcm.cn

  • 中图分类号: O381

Numerical simulation of two-phase detonation of suspending RDX-Al dust in air with CE/SE

  • 摘要: 通过CE/SE方法模拟了空气中炸药-铝粉尘的两相爆轰过程, 研究了双粉尘爆轰过程中粒子不同密度对爆轰波速度、压力的影响, 得到密度与波速、爆压间的线性关系。模拟得到悬浮粉尘在复杂通道中的爆轰波传播过程, 研究了双粉尘爆轰的流场演化过程, 选取流场中的一些点对该处流场的压力及温度随时间的变化进行重点研究, 对比了单铝粉尘在同种条件下的爆轰过程, 发现双粉尘爆轰明显提高了爆轰波波速和流场的压力及温度。模拟结果表明CE/SE方法可以成功模拟双粉尘的爆轰过程, 可为多粉尘爆轰的研究提供参考。
  • 图  1  CE/SE求解区域模型

    Figure  1.  CE/SE area model

    图  2  爆轰波速度随双粉尘中铝粉尘密度的变化

    Figure  2.  Wave speed varying with dust density

    图  3  爆轰波压力随双粉尘中铝粉尘密度的变化

    Figure  3.  Detonation pressure varying with dust density

    图  4  模拟区域几何模型

    Figure  4.  Geometrical model of simulated area

    图  5  不同时刻流场压力演化图

    Figure  5.  Detonation pressure varying with time

    图  6  不同点的压力随时间变化曲线

    Figure  6.  Pressure varying with time at different points

    图  7  不同点的温度随时间变化曲线

    Figure  7.  Temperature varying with time at different point

    图  8  铝单颗粒时不同点的压力随时间变化曲线

    Figure  8.  Pressure varying with time at different points of Al

    图  9  铝单颗粒时不同点的温度随时间变化曲线

    Figure  9.  Temperature varying with time at different points of Al

  • [1] 惠君明, 刘荣海, 葛桂兰.提高FAE威力的研究(Ⅰ)——高能量燃料的选择[J].南京理工大学学报, 1995, 19(5):472-476. http://www.cnki.com.cn/Article/CJFDTOTAL-NJLG505.022.htm

    Hui Junming, Liu Yonghai, Ge Guilan. Study on increasing the power of FAE(Ⅰ)—selection of high energy fuels[J]. Journal of Nanjing University of Science and Technology, 1995, 19(5):472-476. http://www.cnki.com.cn/Article/CJFDTOTAL-NJLG505.022.htm
    [2] 陈朗, 张寿齐, 赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击, 1999, 19(3):1-7. http://www.bzycj.cn/article/id/10350

    Chen Lang, Zhang Shouqi, Zhao Yuhua. Study of the metal acceleration capacities of aluminized explosives with spherical aluminum particles of different diameter[J]. Explosion and Shock Waves, 1999, 19(3):1-7. http://www.bzycj.cn/article/id/10350
    [3] 洪滔, 秦承森, 林文洲.悬浮RDX炸药和铝颗粒混合粉尘爆轰的数值模拟[J].爆炸与冲击, 2009, 29(5):468-473. doi: 10.3321/j.issn:1001-1455.2009.05.004

    Hong Tao, Qin Chengsen, Lin Wenzhou. Numerical simulation of detonation in suspended mixed RDX and aluminum dust[J]. Explosion and Shock Waves, 2009, 29(5):468-473. doi: 10.3321/j.issn:1001-1455.2009.05.004
    [4] Chang S C. The method of space-time conservation element and solution element-A new approach for solving the Navier-Stokes and Euler equations[J]. Journal of Computational Physics, 1995, 119(2):295-324. doi: 10.1006/jcph.1995.1137
    [5] Wu Y, Yang V, Chang S C. Space-time method for chemically reacting flows with detailed kinetics[M]. Heidelberg: Springer Berlin Heidelberg, 2001:207-212.
    [6] Dong Hefei, Hong Tao, Zhang Deliang. Application of the CE/SE method to a two-phase detonation model in porousmedia[J]. Chinese Physics Letters, 2011, 28(3):30203-30206. doi: 10.1088/0256-307X/28/3/030203
    [7] Zhang D L, Wang J T, Wang G. High-order CE/SE method and applications[J]. Chinese Journal of Computational Physics, 2009, 26(2):211-220. http://cn.bing.com/academic/profile?id=aac6d827546328e8e2c309a1575c71a9&encoded=0&v=paper_preview&mkt=zh-cn
    [8] Wang J T, Zhang D L, Liu K X. A Eulerian approach based on CE/SE method for 2D multimaterial elastic-plastic flows[J]. Chinese Journal of Computational Physics, 2007, 24(4):395-401. http://cn.bing.com/academic/profile?id=a66b29fb410c1252c508f0a8ff4de219&encoded=0&v=paper_preview&mkt=zh-cn
    [9] 洪滔, 林文洲.激波管中悬浮炸药粉尘爆轰的数值模拟[J].高压物理学报, 2010, 24(1): 15-20.

    Hong Tao, Lin Wenzhou, Qin Chengsen. Numerical simulation of suspended RDX dust detonation in a shock tube[J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 15-20.
    [10] Price E W. Combustion of metalized propellants[C]//Progress in Astronautics and Aeronautics: Fundamenals of Solid-Propellant Combustion, AIAA. New York, 1984, 90: 479-513.
    [11] Steinberg T A, Wilson D B, Benz F. The combustion phase of burning particle[J]. Combustion and Flame, 1992, 91(2):200-208. doi: 10.1016/0010-2180(92)90100-4
    [12] Eidelman S, Yang X L. Detonation wave propagation in combustible particle/air mixture with variable particle density distributions[J]. Combustion Science and Technology, 1993, 89:201-218. doi: 10.1080/00102209308924109
    [13] 董贺飞, 洪滔, 张晓立.CE/SE方法数值模拟炸药粉尘爆轰[J].中国计算物理通讯, 2012, 29(4):495-502. http://www.cnki.com.cn/Article/CJFDTotal-JSWL201204003.htm

    Dong Hefei, Hong Tao, Zhang Xiaoli. Numerical simulation of explosive dust detonation with CE/SE method[J]. Chinese Journal of Computational Physics, 2012, 29(4):495-502. http://www.cnki.com.cn/Article/CJFDTotal-JSWL201204003.htm
    [14] 洪滔, 秦承森.悬浮铝粉尘爆轰波参数[J].含能材料, 2004, 12(3):129-133. doi: 10.3969/j.issn.1006-9941.2004.03.001

    Hong Tao, Qin Chengsen. Parameters of detonation in suspended aluminum dust[J]. Energetic Materials, 2004, 12(3):129-133. doi: 10.3969/j.issn.1006-9941.2004.03.001
    [15] Tulis A J, Selman J R. Detonation tube studies of aluminum particles dispersed in air[J]. Symposium on Combustion, 1982, 19(1):655-663. http://cn.bing.com/academic/profile?id=145d2922e96f727cc760c5ec52a933af&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(9)
计量
  • 文章访问数:  4732
  • HTML全文浏览量:  1355
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-10
  • 修回日期:  2016-01-20
  • 刊出日期:  2016-09-25

目录

    /

    返回文章
    返回