• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

卵形弹体侵彻预开孔靶理论分析

邓佳杰 张先锋 乔治军 郭磊 何勇 陈东东

邓佳杰, 张先锋, 乔治军, 郭磊, 何勇, 陈东东. 卵形弹体侵彻预开孔靶理论分析[J]. 爆炸与冲击, 2016, 36(5): 625-632. doi: 10.11883/1001-1455(2016)05-0625-08
引用本文: 邓佳杰, 张先锋, 乔治军, 郭磊, 何勇, 陈东东. 卵形弹体侵彻预开孔靶理论分析[J]. 爆炸与冲击, 2016, 36(5): 625-632. doi: 10.11883/1001-1455(2016)05-0625-08
Deng Jiajie, Zhang Xianfeng, Qiao Zhijun, Guo Lei, He Yong, Chen Dongdong. An analytic model of penetration for oval-nosed projectile penetrating into pre-drilled target[J]. Explosion And Shock Waves, 2016, 36(5): 625-632. doi: 10.11883/1001-1455(2016)05-0625-08
Citation: Deng Jiajie, Zhang Xianfeng, Qiao Zhijun, Guo Lei, He Yong, Chen Dongdong. An analytic model of penetration for oval-nosed projectile penetrating into pre-drilled target[J]. Explosion And Shock Waves, 2016, 36(5): 625-632. doi: 10.11883/1001-1455(2016)05-0625-08

卵形弹体侵彻预开孔靶理论分析

doi: 10.11883/1001-1455(2016)05-0625-08
基金项目: 

国家自然科学基金项目 10902053

中央组织部青年拔尖人才支持计划项目 2014年

爆炸冲击防灾减灾国家重点实验室(解放军理工大学)开放基金项目 DPMEIKF201405

详细信息
    作者简介:

    邓佳杰(1990—),男,博士研究生, jiajie_0827@163.com

  • 中图分类号: O385

An analytic model of penetration for oval-nosed projectile penetrating into pre-drilled target

  • 摘要: 以破爆型串联战斗部后级随进弹对预开孔靶侵彻过程为研究对象,基于锥形预开孔和库仑摩擦模型,发展完善了包括扩孔/开坑和稳定侵彻的卵形弹体侵彻预开孔靶理论模型。分别对该模型在侵彻脆性和弹塑性靶体的有效性进行了实验验证。利用该模型分析了弹头曲径比、预开孔直径、预开孔形状等对侵彻结果的影响。研究结果表明:发展完善的模型计算结果与实验数据吻合较好。柱形开孔情况下,侵彻速度、弹头曲径比及相对孔径同侵彻深度呈正比;在侵彻容积相同的条件下,弹体侵彻预开锥孔的侵深结果与锥角及相对入孔孔径变化关系较大。
  • 图  1  弹体与预开孔靶参数的定义

    Figure  1.  Parameter definition of projectile and pre-drilled target

    图  2  6061-T6511靶侵彻数据与理论模型预估

    Figure  2.  Experiment and theory results of 6061-T6511 target

    图  3  混凝土靶侵彻数据与理论模型预估

    Figure  3.  Experiment and theory results of concrete target

    图  4  实验弹外形图

    Figure  4.  Photo of actual oval-nosed projectile

    图  5  实验前后靶体实物图

    Figure  5.  Photographs of 2024 aluminum targets

    图  6  靶体开孔情况下入射速度与侵彻深度的关系

    Figure  6.  Velocity vs. penetration depth into pre-drilled targets

    图  7  靶体开孔情况下相对孔径与相对侵彻深度的关系

    Figure  7.  Relative cavity radius vs. relative penetration depth into pre-drilled targets

    图  8  不同开孔下的弹体头部曲径比与侵彻深度的关系

    Figure  8.  CRH vs. penetration depth into pre-drilled targets

    图  9  锥形开孔靶体侵彻速度与侵彻深度的关系

    Figure  9.  Velocity vs. penetration depth into concrete targets with various pre-drilled taper holes

    表  1  侵彻深度实测值与计算结果的对比

    Table  1.   Comparison of experimental results with theoretical calculation

    Rh/Rp v0 /(m·s-1) H/mm δ/%
    实验结果 理论模型
    0 323.1 27.6 28.1 1.8
    435.4 38.6 37.6 2.6
    570.6 53.5 53.4 0.2
    694.1 73.1 70.9 3.0
    0.55 307.9 34.5 31.7 8.1
    367.0 38.6 37.8 2.1
    475.8 52.0 53.3 2.5
    571.7 73.5 70.1 4.6
    0.76 350.1 54.6 50.6 7.3
    481.3 81.3 78.9 3.0
    527.6 88.3 91.4 3.5
    591.2 105.7 110.3 4.4
    下载: 导出CSV

    表  2  靶体锥形预开孔参数

    Table  2.   Taper hole parameters

    Rh/Rp h/m θ/(°) Vc/m3
    0.48 4.6 0 0.047
    0.70 4.6 0.76 0.047
    0.82 4.6 1.23 0.047
    下载: 导出CSV
  • [1] Teland J A. Cavity expansion theory applied to penetration of targets with pre-drilled cavities[C]//19th International Symposium on Ballistics. Interlaken, Switzerland: IBC, 2001: 1329-1335.
    [2] 张雷雷, 黄风雷.基于修正空腔膨胀理论的随进弹丸侵彻规律分析[J].北京理工大学学报, 2007, 26(12):1038-1042. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200612002

    Zhang Leilei, Huang Fenglei. Analysis on the penetration performance of a following projectile based on modified cavity expansion theory[J]. Transactions of Beijing Institute of Technology, 2007, 26(12):1038-1042. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200612002
    [3] 王树有.串联侵彻战斗部对钢筋混凝土介质的侵彻机理[D].南京: 南京理工大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10288-2006183405.htm
    [4] 王静, 王成.修正的卵形弹丸侵彻带有预制孔混凝土靶板的理论模型与数值模拟研究[J].计算力学学报, 2009, 26(4):558-561. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200904022.htm

    Wang Jing, Wang Cheng. A modified theoretical model of the concrete target with pre-drilled cavities penetrated by the ogive-nose projectile and its numerical simulations[J]. Chinese Journal of Computational Mechanics, 2009, 26(4):558-561. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200904022.htm
    [5] 文鹤鸣, 郭晓钧.空穴膨胀模型及其在二级弹头系统中的应用[C]//第十一届全国冲击动力学学术会议文集.咸阳: 中国力学学会, 2013.
    [6] Folsom Jr E N. Projectile penetration into concrete with an inline hole[R]. Lawrence Livermore National Laboratory, UCRL-53786, 1987.
    [7] Mostert F J. Penetration of steel penetrators into concrete targets with pre-drilled cavities of different diameters[C]//Proceedings of the 18th International Symposium on Ballistics. San Antonio, Texas, USA: IBC, 1999: 1042-1048.
    [8] 冯兴民.空腔膨胀的数值模拟研究及其在侵彻力学中的应用[D].长沙: 国防科学技术大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-90002-1011303262.htm
    [9] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. doi: 10.1016/0734-743X(94)80024-4
    [10] Forrestal M J, Warren T L. Penetration equations for ogive-nose rods into aluminum targets[J]. International Journal of Impact Engineering, 2008, 35(8):727-730. doi: 10.1016/j.ijimpeng.2007.11.002
    [11] 柴传国, 皮爱国, 武海军, 等.卵形弹体侵彻混凝土开坑区侵彻阻力计算[J].爆炸与冲击, 2014, 34(5):630-635. doi: 10.11883/1001-1455(2014)05-0630-06

    Chai Chuanguo, Pi Aiguo, Wu Haijun, et al. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete[J]. Explosion and Shock Waves, 2014, 34(5):630-635. doi: 10.11883/1001-1455(2014)05-0630-06
    [12] Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476. doi: 10.1016/0734-743X(95)00048-F
    [13] 吴昊, 方秦, 龚自明.考虑刚性弹弹头形状的混凝土(岩石)靶体侵彻深度半理论分析[J].爆炸与冲击, 2012, 32(6):573-580. doi: 10.3969/j.issn.1001-1455.2012.06.003

    Wu Hao, Fang Qin, Gong Ziming. Semi-theoretical analyses for penetration depth of rigid projectiles with different nose geometries into concrete (rock) targets[J]. Explosion and Shock Waves, 2012, 32(6):573-580. doi: 10.3969/j.issn.1001-1455.2012.06.003
    [14] Piekutowski A J, Forrestal M J, Poormon K L, et al. Penetration of 6061-T6511 aluminum targets by ogive-nose Steel projectiles with striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering, 1999, 23(1):723-734. doi: 10.1016/S0734-743X(99)00117-7
    [15] Forrestal M J, Okajima K, Luk V K. Penetration of 6061-T651 aluminum targets with rigid long rods[J]. Journal of Applied Mechanics, 1988, 55(4):755-760. doi: 10.1115/1.3173718
    [16] Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476. doi: 10.1016/0734-743X(95)00048-F
    [17] Wang Y N, Wu H J, Huang F L, et al. Analysis of rigid motion for penetration of concrete[C]//Proceedings of the 7th International Conference on Shock & Impact Loads on Structures. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2007: 627-638.
    [18] 午新民, 王中华.国外机载武器战斗部手册[M].北京:兵器工业出版社, 2005.
    [19] 肖强强, 黄正祥, 祖旭东.双材质复合射流对混凝土的侵彻[J].爆炸与冲击, 2014, 34(4):457-463. doi: 10.3969/j.issn.1001-1455.2012.06.003

    Xiao Qiangqiang, Huang Zhengxiang, Zu Xudong. Penetration of jacketed jet into concrete[J]. Explosion and Shock Waves, 2012, 32(6):573-580. doi: 10.3969/j.issn.1001-1455.2012.06.003
    [20] 肖强强.聚能装药对典型土壤/混凝土复合介质目标的侵彻研究[D].南京: 南京理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013167550.htm
  • 期刊类型引用(1)

    1. 董建才, 张先锋, 刘闯, 沈陶然, 梁俊宣. 弹体侵彻预损伤花岗岩靶体作用特性研究. 北京理工大学学报. 2025(10) 百度学术

    其他类型引用(1)

  • 加载中
推荐阅读
弹体高速侵彻花岗岩靶体的结构响应特性
韩明海 等, 爆炸与冲击, 2025
弹体侵彻钢筋混凝土遮弹层的阻力方程
王武 等, 爆炸与冲击, 2025
空心弹高速入水机理及特性数值模拟研究
黄振贵 等, 爆炸与冲击, 2024
弹体对超高性能混凝土侵彻深度的研究
聂晓东 等, 爆炸与冲击, 2024
弹体侵彻混凝土的优化模型及可视化仿真研究
苏永超 等, 高压物理学报, 2025
平头弹冲击下复合材料层合板抗侵彻特性研究
郭安肖 等, 中北大学学报(自然科学版), 2025
椭圆截面弹体侵彻多层混凝土靶的数值仿真
薛颖杰 等, 中北大学学报(自然科学版), 2025
Synergistic cooperation of zn(002) texture and amorphous zinc phosphate for dendrite-free zn anodes
Song, Xinxin et al., ACS NANO, 2023
Transient rock breaking characteristics by successive impact of shield disc cutters under confining pressure conditions
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024
Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs
ENGINEERING STRUCTURES, 2024
Powered by
图(9) / 表(2)
计量
  • 文章访问数:  4671
  • HTML全文浏览量:  1339
  • PDF下载量:  623
  • 被引次数: 2
出版历程
  • 收稿日期:  2015-02-04
  • 修回日期:  2015-05-20
  • 刊出日期:  2016-09-25

目录

    /

    返回文章
    返回