• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

铝合金与槽型界面钢板的爆炸焊接

李雪交 马宏昊 沈兆武

巫绪涛, 廖礼. 脆性材料中应力波衰减规律与层裂实验设计的数值模拟[J]. 爆炸与冲击, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07
引用本文: 李雪交, 马宏昊, 沈兆武. 铝合金与槽型界面钢板的爆炸焊接[J]. 爆炸与冲击, 2016, 36(5): 640-647. doi: 10.11883/1001-1455(2016)05-0640-08
Wu Xutao, Liao Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design[J]. Explosion And Shock Waves, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07
Citation: Li Xuejiao, Ma Honghao, Shen Zhaowu. Explosive welding of interface between aluminum alloy and steel plate with dovetail grooves[J]. Explosion And Shock Waves, 2016, 36(5): 640-647. doi: 10.11883/1001-1455(2016)05-0640-08

铝合金与槽型界面钢板的爆炸焊接

doi: 10.11883/1001-1455(2016)05-0640-08
基金项目: 

国家自然科学基金面上项目 51374189

国家自然科学基金面上项目 51174183

详细信息
    作者简介:

    李雪交(1986—),男,博士研究生

    通讯作者:

    马宏昊, hhma@ustc.edu.cn

  • 中图分类号: O389

Explosive welding of interface between aluminum alloy and steel plate with dovetail grooves

  • 摘要: 采用尺寸为4 mm×410 mm×410 mm的5083铝合金和尺寸为15 mm×400 mm×400 mm、表面开有燕尾槽的Q345钢板作为爆炸焊接的覆板与基板,根据理论公式得到铝合金-钢爆炸焊接下限后,选取其附近的参数进行爆炸焊接,再通过力学性能检测和微观形貌观察研究5083/Q345复合板界面的结合性能。实验结果表明:铝合金与钢在冶金结合和燕尾槽的挤压啮合共同作用下实现爆炸复合;铝合金与燕尾槽上底面、倾斜面和下底面的界面均呈平直状。铝合金与燕尾槽上底面、下底面以直接结合和不连续熔化块相结合的方式复合,而铝合金与燕尾槽倾斜面以连续熔化层的方式复合;复合板的剪切强度大于172 MPa,满足Al/Fe复合板结合强度的要求。
  • 激光冲击强化(laser shock peening, LSP)是一种诱导靶材表层深残余压应力、晶粒细化和低幅冷加工的先进表面处理技术[1-2],被广泛应用于改善金属材料的抗疲劳、抗腐蚀、抗摩擦磨损和抗外物损伤性能[3-6]。但LSP技术应用于金属材料改性的同时,仍存在一些问题,如影响叶片气动性能的粗糙强化表面形貌、LSP薄壁件塑性变形约束击穿[7]和LSP薄壁件边缘弯曲变形等,特别是有可能损伤金属材料,即形成层裂[8-9]。当激光冲击卸载波与靶材背面反射稀疏波相互作用,形成的动态拉应力强度和持续时间达到一定阈值时,靶材内部产生累积损伤断裂,即层裂[10]

    对激光冲击波改性的整体叶盘,层裂损伤将迅速降低整体叶盘的疲劳性能,严重影响发动机寿命和可靠性。层裂损伤是材料微损伤的累积结果,与材料特性有关。避免激光冲击强化整体叶盘层裂损伤的发生,需要了解和掌握整体叶盘材料Ti17合金经激光冲击强化后的层裂特性以及激光冲击强化改性的临界条件,这样有利于这项技术更好地应用于整体叶盘改性。我们已将LSP技术应用于整体叶盘强化改性,而整体叶盘叶片叶根、叶尖和一弯节线处为中厚样品。为更好地实现工业应用,需要对激光冲击Ti17合金中厚样品进行层裂特性研究。而目前,主要研究的是激光冲击加载薄片样品的层裂特性,如:Lescoute等[11]研究激光冲击铝、金和铁薄片(150~300 μm厚)的层裂强度和层裂断口形貌;Dalton等[12]研究基体微观组织对激光冲击铝合金(500和200 μm厚)的层裂强度的影响。与薄片样品层裂相比,中厚样品的层裂损伤无法从样品背面进行观察和判别,存在更大的风险。当前,中厚样品的层裂损伤特性研究方法主要为平板冲击实验,如:翟少栋[13]采用平板冲击实验研究6 mm厚纯铝的层裂行为;Tyler等[14]采用平板冲击实验研究6和12 mm厚Ti64的层裂强度和层裂形貌;Boidin等[15]采用平板冲击实验研究6~20 mm厚TC4钛合金的层裂特性。但对激光冲击加载Ti17合金中厚样品的层裂损伤特性研究,却少有报道。因此,亟需开展激光冲击Ti17合金中厚样品的层裂阈值及层裂特性研究。

    本文中,以整体叶盘所用材料Ti17合金为研究对象,采用叶盘强化工艺参数对Ti17合金中厚样品表面进行单点连续多次激光冲击,研究不同激光冲击次数下Ti17合金的表面形貌和层裂损伤,获得激光冲击Ti17合金中厚样品的层裂阈值、层裂大小和层裂厚度以及层裂机理。

    实验材料为热处理后的β锻Ti17合金,一种α+β型双相网篮组织,如图 1所示。Ti17合金材料的化学成分为:w(Al)=4.5%~5.5%, w(Sn)=1.6%~2.4%, w(Zr)=1.6%~2.4%, w(Mo)=3.5%~4.5%, w(Cr)=3.5%~4.5%, 其余为Ti。热处理条件为800 ℃/4 h固溶强化和630 ℃ /8 h时效处理,力学性能参数为:抗拉强度Rm=956.05 MPa,屈服强度Rp0.2=878.24 MPa,延伸率A=18.19%,断面收缩率Z=53.37%。从β-Ti17合金锻件,线切割中厚样品,样品尺寸50 mm × 50 mm × 5 mm,样品表面依次进行200#、400#、800#、1 000#金相砂纸打磨和丙酮清洗,然后对中厚样品表面进行单点连续多次激光冲击。

    图  1  基体Ti17合金的微观组织
    Figure  1.  Microstructure ofas-received Ti17 alloy

    采用能量稳定且空间均匀分布的Nd:YAG激光器及LSP设备(见图 2),对Ti17合金中厚样品表面进行单点连续多次激光冲击。激光冲击频率为1 Hz,冲击次数为1~8,每次激光冲击工艺参数为:脉冲能量30 J,脉宽15 ns,方形光斑尺寸4 mm×4 mm。用光束整形镜将激光器输出的圆形光斑转换为辐射在样品表面的方形光斑。样品表面粘贴0.12 mm厚铝箔牺牲介质,避免激光冲击过程中样品表面烧蚀,喷嘴给样品表面冲击区域提供1~2 mm厚的去离子水帘约束层,提高冲击波峰值压力。

    图  2  LSP设备
    Figure  2.  LSP setup

    采用Veeco wykoNT 1100非接触三维白光干涉表面轮廓仪,测试激光冲击中厚样品表面的三维形貌,仪器测试区域为120 μm×90 μm。每个光斑强化区域由5个测试区域拼接而成,取平均值。

    采用KSI超声显微检测系统和超声纵波垂直反射法,对中厚样品进行水浸C扫描超声波无损检测,如图 3所示。仪器参数为:50 MHz水浸聚焦探头,灵敏度0.8~24 db,扫查成像×500(扫查间距0.1 mm)。

    图  3  水浸法C扫描Ti17合金中厚样品示意图
    Figure  3.  Schematic diagram of a C-scan examination withwater immersion for Ti17 alloy mid-thick sample

    沿中厚样品冲击区域中心线进行线切割,获得冲击区域的横截面,然后依次对横截面样品进行镶嵌、研磨、抛光和腐蚀,最后采用扫描电镜(SEM)分析横截面特征形貌。腐蚀液质量比为:氢氟酸:硝酸:水=1:2:7,腐蚀10 s。

    激光器输出的高能激光束辐射在靶材表面吸收层上,吸收层迅速熔化、气化和电离,形成高温高压等离子体。等离子体继续吸收激光能量产生膨胀,膨胀的等离子体受到水约束层限制,发生爆炸,形成传向靶材内部的激光冲击波。激光冲击波峰值压力模型为[16]

    pm/GPa=0.01α2α+3Z/(gcm2s1)I0/(GWcm2)
    (1)

    式中:α为内能转化为热能部分的系数,取α=0.1[17]Z为靶材和约束层的声折合阻抗:

    2Z=1Ztarget+1Zwater
    (2)

    其中        Zwater=0.165×106 g·cm-2·s-1Ztarget=1.8×106 g·cm-2·s-1

    因此        Z=3.02×105 g·cm-2·s-1

    激光功率密度为:

    I0=E/(τs)
    (3)

    式中:E为激光能量,τ为脉宽,s为光斑面积。

    样品层裂损伤不是瞬时的,而是时间的累积过程。强激光冲击波加载下,定义一个与位置r和时间t有关的样品损伤函数f(r, t),其中损伤位置r与冲击波波形相关,损伤时间t与冲击波峰值压力、冲击次数和冲击波脉宽相关。单点连续多次激光冲击过程中,每次激光冲击采用的冲击波峰值压力、冲击波脉宽和靶材内部冲击波波形相同,仅激光冲击次数不同。因此,当某个位置r的损伤函数f关于激光冲击次数t(t次冲击波持续时间)的累积达到阈值Ks时,层裂形成。满足层裂损伤阈值的最小激光冲击次数t[18]

    f(r,t)=f[σ(r,t)]=[max(σσR,0)]A
    (4)
    Σf(r,t)ΔtKs
    (5)

    式中:KsσRA为材料常数;σR可视为材料动态或静态屈服强度;拉应力σ=σ(t)。

    由式(1)~(3)可得,LSP的激光功率密度和激光冲击波峰值压力分别为12.5 GW/cm2和3.62 GPa。激光冲击波峰值压力大于Ti17合金的动态屈服极限(2.8 GPa[19]),因此Ti17合金表层产生塑性变形。

    图 4为不同连续激光冲击次数下Ti17合金中厚样品的表面形貌。由图 4可知,激光冲击Ti17合金表面产生方形凹坑,且凹坑中心凸起。单点1~8次连续激光冲击Ti17合金的表面凹坑深度分别为7.10、8.87、13.2、20.0、32.9、38.1、40.6和45.3 μm,凹坑深度分别增加24.9%、48.8%、51.5%、64.5%、15.8%、6.6%、11.6%。随着连续冲击次数增加,凹坑深度逐渐增加趋于饱和,其中单点4次到5次连续激光冲击,凹坑深度增加值最大为64.5%。单点1~8次连续激光冲击Ti17合金中厚样品的表面凹坑中心凸起高度分别为6.00、6.87、11.0、18.0、22.1、27.4、30.4和31 μm,凹坑中心凸起高度分别增加14.5%、60.1%、63.6%、22.8%、24.0%、10.9%、2.0%。随着连续激光冲击次数增加,凹坑中心凸起高度逐渐增加趋于饱和。

    图  4  不同连续激光冲击次数下Ti17合金中厚样品的表面形貌
    Figure  4.  Surface morphology of Ti17 alloy mid-thick sample with different continue LSP shots

    不同连续激光冲击次数下Ti17合金中厚样品冲击区域的C扫描成像图,如图 5所示。由图 5可知,单点1~4次连续激光冲击Ti17合金中厚样品冲击区域内部无层裂,单点5~8次连续激光冲击中厚样品冲击区域内部存在层裂,层裂尺寸为1.17 mm×0.84 mm、1.10 mm×0.68 mm、1.62 mm×1.44 mm和1.86 mm×1.68 mm。随着连续激光冲击次数增加,中厚样品层裂面积逐渐增大。层裂损伤扫描结果与激光冲击Ti17合金中厚样品的表面形貌(见图 4)相对应,即单点4次到5次连续激光冲击中厚样品的表面凹坑深度增加值最大、单点5次连续激光冲击Ti17合金中厚样品存在层裂相对应。因此,单点连续5次激光冲击为Ti17合金中厚样品的层裂阈值。

    图  5  不同连续激光冲击次数下Ti17合金中厚样品冲击区域的C扫描成像图
    Figure  5.  C-scan images of shot areas of Ti17 alloy mid-thick samplewith different continue LSP shots

    图 6为Ti17合金中厚样品冲击区域中心的横截面特征形貌。由图 6可知:单点1~4次连续激光冲击中厚样品的横截面无层裂;单点5~8次连续激光冲击中厚样品横截面存在层裂,并且单点5、6、7和8次连续激光冲击中厚样品的层裂位置(层裂厚度)分别约为308、280、310和307 μm。

    图  6  Ti17合金中厚样品冲击区域中心的横截面特征形貌
    Figure  6.  Cross-sectional characterization morphologies at center of LSP areas of Ti17 alloy mid-thick sample

    图 7为靶材内部层裂形成原理图。由图 7可知:LSP过程中,靶材表面形成传向自由面的平面冲击波C(见图 7(a));当平面冲击波C传至靶材自由面时,平面冲击波C反射形成传向靶材表面的平面稀疏波R(见图 7(b));当LSP结束时,靶材表面立即形成传向自由面的平面卸载波U;平面冲击波C为压力波,平面卸载波U为拉力波,平面稀疏波R为拉力波,当平面卸载波U与平面稀疏波R相互作用,形成一对反向拉力波时,作用区域形成动态拉应力;当动态拉应力幅值和持续时间达到一定值时,平面层裂形成(见图 7(c))。

    图  7  靶材内部层裂形成原理图
    Figure  7.  Schematic diagram of interior spall formation of target

    综上所述,当靶材内部动态拉应力幅值和持续时间满足层裂阈值条件时,靶材内形成层裂。动态拉应力幅值与冲击波峰值压力、靶材厚度和光斑大小相关,动态拉应力持续时间与激光脉宽和连续激光冲击次数相关。因此,只有在特定条件下,连续多次激光冲击金属材料才有可能产生层裂。实际应用中,我们采用专利技术在叶片边缘背面粘贴吸波层,从而有效地防止了激光冲击叶片产生层裂现象。

    图 8为单点7次连续激光冲击Ti17合金中厚样品的层裂形貌,分别有晶界失效、晶内失效、微孔洞形核、微孔洞增长和微孔洞汇合。β相基体上富集β稳定元素,所以β相的固有强度大于α相,且晶内α相强度稍大于晶界α相[20],导致Ti17合金中厚样品的层裂微孔洞主要在晶界α相形核(见图 8(c)),也可能在晶内α相形核。随着连续激光冲击次数/动态拉应力持续时间增加,Ti17合金内部的微孔洞增长和汇合(见图 8(d)~(e)),最终形成层裂,层裂失效模式为晶界失效和晶内失效(见图 8(a)~(b))。图 8所示的Ti17合金的层裂特性与Boidin等[15]的结果相似。因此,单点连续激光冲击Ti17合金中厚样品的层裂为晶界失效和晶内失效的混合失效模式,但晶界失效模式起主要作用,层裂机理为韧性微孔洞的形核、增长和汇合。

    图  8  单点7次连续激光冲击Ti17合金中厚样品的层裂形貌
    Figure  8.  Spall morphology of Ti17 alloy mid-thickness sample with single spot and successive seven LSP shots

    对Ti17合金中厚样品表面进行单点连续多次激光冲击,获得方形光斑单点5次连续激光冲击为Ti17合金的层裂阈值或改性临界值。实际应用中,激光冲击强化发动机叶片所用的单点连续激光冲击次数没有超过5次,且采用了防层裂措施,因此不会产生层裂现象。具体研究结论如下。

    (1) 随着连续激光冲击次数增加,Ti17合金表面凹坑深度和凹坑中心凸起高度逐渐增加并趋于饱和。单点1~8次连续激光冲击中厚样品的表面凹坑深度分别为7.10、8.87、13.2、20.0、32.9、38.1、40.6和45.3 μm。单点1~8次连续激光冲击中厚样品的表面凹坑中心凸起高度分别为6.00、6.87、11.0、18.0、22.1、27.4、30.4和31.0 μm。单点从4次到5次连续激光冲击中厚样品表面凹坑深度增加值最大为64.5%。

    (2) 单点5次连续激光冲击为Ti17合金中厚样品的层裂阈值,与表面凹坑深度增加值最大相对应。随着连续激光冲击次数增加,层裂面积逐渐增大。单点5~8次连续激光冲击中厚样品的层裂尺寸分别为1.17 mm×0.84 mm、1.10 mm×0.68 mm、1.62 mm×1.44 mm和1.86 mm×1.68 mm。

    (3) 单点5~8次连续激光冲击Ti17合金中厚样品的层裂位置(层裂厚度)分别约为308、280、310和307 μm。Ti17合金中厚样品的层裂机理为韧性微孔洞形核、增长和汇合,最终形成晶界失效和晶内失效的层裂,且晶界失效起主要作用。

    本文中,采用方形光斑单点连续多次激光冲击技术,对Ti17合金中厚样品进行层裂阈值和层裂特性研究,通过超声波无损检测技术检测出激光冲击中厚样品的层裂现象,研究结果对激光冲击强化金属材料改性工业应用具有重要价值。但针对不同厚度Ti17合金样品,在不同激光工艺参数下样品的层裂阈值,以及样品内部的应变分布有待进一步深入研究。基于激光冲击强化Ti17合金改性临界值/层裂阈值研究,可建立完善的激光冲击强化整体叶盘工艺数据库。

    感谢中科院力学所等单位的大力支持和帮助!
  • 图  1  燕尾槽截面示意图

    Figure  1.  Schematic of cross-section of dovetail grooves

    图  2  铝蜂窝板

    Figure  2.  Aluminum honeycomb panel

    图  3  铝蜂窝炸药

    Figure  3.  Aluminum honeycomb explosive

    图  4  爆炸焊接装置示意图

    Figure  4.  Schematic of explosive welding set-up

    图  5  爆炸复合板截面实物图

    Figure  5.  Image of actual cross-section of explosive clad plate

    图  6  拉剪破坏试件实物图

    Figure  6.  Image of actual tensile shear failure specimen

    图  7  爆炸复合板金相观察位置

    Figure  7.  Metallographic observation points of explosive clad plate

    图  8  爆炸复合板界面的金相组织图

    Figure  8.  Metallographic images at the interfaces of 5083/Q345 clad plate

    图  9  爆炸复合板界面扫描电镜图

    Figure  9.  SEM images of the interfaces of explosive clad plate

    图  10  爆炸复合板界面能谱分析

    Figure  10.  EDS analysis across the interface of explosive clad plate

    表  1  基板与覆板的物理和机械性能

    Table  1.   Physical and mechanical properties of flyer and base plates

    金属材料 Tm/℃ ρ/(g·cm-3) HV σs/MPa σb/MPa c/(m·s-1)
    5083铝合金 570~640 2.72 61 125 270 6 300
    Q345钢 1 523 7.85 168 385 609 6 000
    下载: 导出CSV

    表  2  爆炸复合板的力学性能实验结果

    Table  2.   Experimental results of mechanical properties of explosive clad plate

    实验编号 Sb/(mm×mm) σb/MPa Sτ/(mm×mm) στ/MPa
    1 10×10 522 4.5×25 178
    2 10×10 538 4.5×25 183
    3 10×10 527 4.5×25 190
    4 10×10 543 4.5×25 172
    下载: 导出CSV

    表  3  界面不同位置的化学成分(摩尔分数)

    Table  3.   Chemical components at different points on the interface (mole fraction)

    界面位置 xAl/% xFe/%
    1 99.16 0.84
    2 73.32 26.68
    3 76.11 23.89
    4 72.45 27.55
    5 0.43 99.57
    下载: 导出CSV
  • [1] 汪育, 史长根, 李焕良, 等.金属复合材料爆炸焊接综合技术[J].焊接技术, 2013, 42(7):1-5. doi: 10.3969/j.issn.1002-025X.2013.07.001

    Wang Yu, Shi Changgen, Li Huanliang, et al. New trend in comprehensive technique of metal explosive welding[J]. Welding Technology, 2013, 42(7):1-5. doi: 10.3969/j.issn.1002-025X.2013.07.001
    [2] 王建民, 朱锡, 刘润泉.铝/钢爆炸复合界面的显微分析[J].材料工程, 2006(11):36-39. doi: 10.3969/j.issn.1001-4381.2006.11.008

    Wang Jianmin, Zhu Xi, Liu Runquan. Micro-analysis of bonding interfaces of explosive welded aluminum/steel plates[J]. Journal of Materials Engineering, 2006(11):36-39. doi: 10.3969/j.issn.1001-4381.2006.11.008
    [3] Han J H, Ahn J P, Shin M C. Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding[J]. Journal of Materials Science, 2003, 38(1):13-18. doi: 10.1023/A:1021197328946
    [4] Tricarico L, Spina R, Sorgente D, et al. Effect of heat treatments on mechanical properties of Fe/Al explosion-welded structural transition joints[J]. Materials & Design, 2009, 30(7):2693-2700. http://www.sciencedirect.com/science/article/pii/S0261306908005086
    [5] 黄杏利, 汪洋, 徐鹏, 等.铝/钛/钢爆炸复合板性能[J].材料热处理技术, 2011, 40(16):103-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201116033

    Huang Xingli, Wang Yang, Xu Peng, et al. Research on property of aluminum/titanium/steel explosive clad plate[J]. Material & Heat Treatment, 2011, 40(16):103-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201116033
    [6] 郑远谋.爆炸焊接和金属复合材料及其工程应用[M].长沙:中南大学出版社, 2007:16-29.
    [7] 郑哲敏, 杨超声.爆炸加工[M].北京:国防工业出版社, 1981:324-464.
    [8] 杨扬.金属爆炸复合技术与物理冶金[M].北京:化学工业出版社, 2006:33-50.
    [9] 布拉齐恩斯基.爆炸焊接、成形与压制[M].李富勤, 吴伯青, 译.北京: 机械工业出版社, 1988: 189-218.
    [10] Stivers S W, Wittman R H. Computer selection of the optimum explosive loading and welding geometry[C]//High Energy Rate Fabrication. Colorado, 1975: 4.2.1-4.2.16.
    [11] Cowan G R, Bergmann O R, Holtzman A H. Mechanism of bond zone wave formation in explosion clad metal[J]. Metallurgical and Materials Transaction B, 1971, 2(11):3145-3155. doi: 10.1007/BF02814967
    [12] 爱拉兹A A.金属爆炸加工的原理与实践[M].张铁生, 梁宜强, 谭渤, 译.北京: 国防工业出版社, 1981: 399.
    [13] Deribas A A, Kudinov V M, Matveenkov F I, et al. Determination of the impact parameters of flat plates in explosive welding[J]. Combustion, Explosion, and Shock Waves, 1967, 3(2):182-186. doi: 10.1007/BF00748745
    [14] 殷建军, 赵海敏, 安丽君, 等.GB 6369-1995《复合钢板力学性能及工艺试验方法》简介[J].理化检验-物理分册, 2000, 36(6):276-281. doi: 10.3969/j.issn.1001-4012.2000.06.013

    Yin Jianjun, Zhao Haimin, An Lijun, et al. Brief introduction to GB 6396-1995 clad plates-mechanical and technological test[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2000, 36(6):276-281. doi: 10.3969/j.issn.1001-4012.2000.06.013
    [15] Li Yan, Hashimoto H, Sukedai E, et al. Morphology and structure of various phases at the bonding interface of Al/steel formed by explosive welding[J]. Journal of Electron Microscopy, 2005, 49(1):5-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002251023
  • 期刊类型引用(3)

    1. 蒙贤忠,夏宇磬,周传波,冯庆高,蒋楠,杨玉民. 土–岩地层水平孔爆破诱发振动传播特征及预测. 岩石力学与工程学报. 2025(03): 737-751 . 百度学术
    2. 王建强,巴智坤,杨秋伟,赵卓,朋茜. 爆破振动作用下桥梁桩孔稳定性振动台试验研究. 桥梁建设. 2024(03): 85-92 . 百度学术
    3. 王梓宇,李胜林,李黎,凌天龙,梁书锋,孙旭. 隧道爆破地震作用下燃气管道动力响应规律研究. 爆破. 2024(03): 212-221+247 . 百度学术

    其他类型引用(0)

  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  4730
  • HTML全文浏览量:  1254
  • PDF下载量:  381
  • 被引次数: 3
出版历程
  • 收稿日期:  2015-03-04
  • 修回日期:  2015-06-03
  • 刊出日期:  2016-09-25

目录

/

返回文章
返回