Formation mechanism and main controlling factors of rock's initial damaged zone under explosive impact effect
-
摘要: 为揭示燃爆冲击作用下井周岩石破坏区的形成机制,并分析影响初始破坏区(破碎区和初始裂隙区)的主控因素,开展了两种岩样在不同加载速率下的冲击破坏实验, 分析了岩石冲击破坏模式及岩石对加载速率的响应, 借助基于Von Mise准则建立的岩石冲击破坏的破碎区和初始裂隙区计算模型可知:加载速率低于190 GPa/s时,可依据冲击峰值压力引导的应力分布确定破碎区和初始裂隙区作用范围;燃爆压裂在近井地带主要产生破碎区和裂隙区,破碎区直径为井眼直径的1~3倍,初始裂隙区直径为井眼直径的5~7倍;冲击载荷作用下,初始破坏区与加载速率、脆性指数呈正相关,且受脆性指数影响更显著。研究结果可提高对燃爆压裂过程中岩石的破坏模式及其主控因素的认识深度,为燃爆压裂冲击条件设计提供指导。Abstract: In this work, to find out the formation mechanism of rock's initial damaged zone under explosive impact effect and investigate the main factors contributing to the initial damaged zone (including the crushed zone and the initial fractured zone) around the oil well, we analyzed the impact failure mode of rock and its response to loading rates by conducting impact failure experiments at different loading rates on two rock samples. With the help of the computational model of the crushed and initial fractured zone based on Von Mise, it is feasible to determine the the size of the crushed zone and the initial fractured zone according to the stress distribution generated by the peak pressure, when the rock crushes at a given loading rate (less than 190 GPa/s). The crushed zone and and the fractured zone are generated mainly in parts of the rock close to the oil well where explosive fractures occur. The diameter of the crushed zone and that of the initial fractured zone is 1~3 and 5~7 times that of the oil-well, respectively. The initial damaged zone is in direct proportion to the brittleness and the loading rate under loading impact and is more strongly influenced by the index of brittleness. The present work deepens the current understanding of the damage mode and main contributing factors of explosive fracture and provides guidance for the design of impact condition involving explosive fracture.
-
Key words:
- mechanics of explosion /
- brittleness /
- loading rate /
- explosive fracture /
- initial damaged zone /
- impact
-
表 1 应变率分析结果
Table 1. Analytical results of strain rate
γ/(GPa·s-1) tp/ms Δm/g ΔV/mm3 $\dot{\varepsilon}$/s-1 岩样Ⅰ 岩样Ⅱ 岩样Ⅰ 岩样Ⅱ 岩样Ⅰ 岩样Ⅱ 76.4 0.85 19.95 22.37 8 243.2 9 683.0 43.1 50.7 85.4 0.83 20.64 22.64 8 528.2 9 800.3 45.7 52.5 108.3 0.83 21.37 23.42 8 829.4 10 140.6 47.3 54.3 120.8 0.84 21.75 23.99 8 987.7 10 385.7 47.6 55.0 142.9 0.82 22.41 24.42 9 259.2 10 571.2 50.2 57.3 160.8 0.80 22.80 24.68 9 420.8 10 682.7 52.4 59.4 180.1 0.76 23.34 25.54 9 643.2 11 057.3 56.4 64.7 191.3 0.76 23.99 26.17 9 913.1 11 328.1 58.0 66.3 204.6 0.75 24.17 26.66 9 986.2 11 539.8 59.2 68.4 212.7 0.75 24.61 27.20 10 168.5 11 774.9 60.3 69.8 表 2 破碎区半径实验值
Table 2. Experimental value of crushed zone radius
γ/(GPa·s-1) 76.4 85.4 108.3 120.8 142.9 160.8 180.1 191.3 204.6 212.7 Ry/mm 岩样Ⅰ 5.206 5.368 5.455 5.521 5.633 5.699 5.789 5.897 5.926 5.998 岩样Ⅱ 5.805 5.902 5.987 6.083 6.155 6.198 6.341 6.443 6.522 6.609 表 3 破坏区半径理论计算值
Table 3. Theoretical value of crushed zone radius
γ/(GPa·s-1) pdf/MPa Ry/mm Rl/mm 岩样Ⅰ 岩样Ⅱ 岩样Ⅰ 岩样Ⅱ 岩样Ⅰ 岩样Ⅱ 76.4 72.29 69.62 4.963 5.306 16.58 17.80 85.4 73.01 70.34 4.968 5.314 16.68 17.89 108.3 75.34 72.67 4.972 5.326 16.89 18.12 120.8 77.01 74.34 4.989 5.346 17.03 18.29 142.9 80.88 78.21 5.016 5.385 17.37 18.66 160.8 85.13 82.46 5.049 5.429 17.72 19.06 180.1 91.24 88.57 5.089 5.476 18.23 19.64 191.3 95.71 93.04 5.125 5.522 18.57 20.03 204.6 102.13 99.46 5.179 5.586 19.04 20.56 212.7 106.73 104.06 5.216 5.631 19.37 20.94 表 4 破碎区半径对比结果
Table 4. Comparison results of crushed zone radius
γ/(GPa·s-1) 76.4 85.4 108.3 120.8 142.9 160.8 180.1 191.3 204.6 212.7 δ/% 岩样Ⅰ 4.90 8.05 9.72 10.67 12.30 12.88 13.75 15.07 14.42 15.00 岩样Ⅱ 9.41 11.07 12.40 13.79 14.30 14.17 15.80 16.68 16.76 17.37 -
[1] 秦发动, 吴晋军.我院高能气体压裂技术十年发展综述[J].西安石油学报, 1997, 12(3):14-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700577626Qin Fadong, Wu Jinjun. The development review of high energy gas fracturing technology in the last ten years in our institute[J]. Journal of Xi'an Petroleum, 1997, 12(3):14-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700577626 [2] Xu P, Cheng Y F, Zhang Y T, et al. A study on low permeability formation's permeability variation induced by explosive fracturing technology[J]. Petroleum Science and Technology, 2013, 31(23):2541-2547. doi: 10.1080/10916466.2011.578093 [3] 吴飞鹏, 蒲春生, 陈德春, 等.多级脉冲爆燃压裂作用过程耦合模拟[J].石油勘探与开发, 2014, 41(5):605-611. http://d.old.wanfangdata.com.cn/Periodical/syktykf201405013Wu Feipeng, Pu Chunsheng, Chen Dechun, et al. Coupling simulation of multistage pulse conflagration compression fracturing[J]. Petroleum Exploration and Development, 2014, 41(5):605-611. http://d.old.wanfangdata.com.cn/Periodical/syktykf201405013 [4] 王玉杰.爆破工程[M].武汉:武汉理工大学出版社, 2007:196-200. [5] 宗琦.岩石内爆炸应力波破裂区半径的计算[J].爆破, 1994(2):15-17. http://www.cnki.com.cn/Article/CJFDTotal-BOPO402.005.htmZong Qi. Calculation of rupture zone radius in rock caused by explosion stress wave[J]. Blasting, 1994(2):15-17. http://www.cnki.com.cn/Article/CJFDTotal-BOPO402.005.htm [6] 戴俊.柱状装药爆破的岩石压碎圈与裂隙圈计算[J].辽宁工程技术大学学报:自然科学版, 2001, 20(2):144-147. http://d.old.wanfangdata.com.cn/Periodical/lngcjsdxxb200102005Dai Jun. Calculation of radii of the broken and cracked areas in rock by a long charge explosion[J]. Journal of Liaoning Technical University: Natural Science Edition, 2001, 20(2):144-147. http://d.old.wanfangdata.com.cn/Periodical/lngcjsdxxb200102005 [7] 张玉柱, 卢文波, 陈明, 等.爆炸应力波驱动的岩石开裂机制[J].岩石力学与工程学报, 2014, 33(增刊1):3144-3149. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1077.htmZhang Yuzhu, Lu Wenbo, Chen Ming, et al. Rock cracking mechanism driven by explosive stress wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(suppl 1):3144-3149. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1077.htm [8] 李海波, 陈德春, 刘卫东, 等.岩石冲击开裂裂缝条数预测模型的建立与验证[J].西安石油大学学报:自然科学版, 2012, 27(2):49-53. http://d.old.wanfangdata.com.cn/Periodical/xasyxyxb201202010Li Haibo, Chen Dechun, Liu Weidong, et al. Establishment and verification of the model for predicting the fracture number of rock impact cracking[J]. Journal of Xi'an Shiyou University: Natural Science, 2012, 27(2):49-53. http://d.old.wanfangdata.com.cn/Periodical/xasyxyxb201202010 [9] 赵国华.低渗油层层内裂缝深部爆炸工艺设计[D].西安: 西安石油大学, 2013. http://cdmd.cnki.com.cn/article/cdmd-10705-1014165929.htm [10] 张奇.岩石爆破的粉碎区及其空腔膨胀[J].爆炸与冲击, 1990, 10(1):68-75. http://www.bzycj.cn/article/id/10822Zhang Qi. Smash district sand expanding of cavities in rock blasting[J]. Explosion and Shock Waves, 1990, 10(1):68-75. http://www.bzycj.cn/article/id/10822 [11] 王京印, 程远方, 刘芳, 等.围压对井内爆炸压裂损伤破坏尺度影响的数值模拟研究[J].石油钻探技术, 2011, 39(4):81-86. doi: 10.3969/j.issn.1001-0890.2011.04.017Wang Jingyin, Cheng Yuanfang, Liu Fang, et al. Numerical simulation for the influence of confined pressure on the damage scale of explosive fracturing inside wellbore[J]. Petroleum Drilling Techniques, 2011, 39(4):81-86. doi: 10.3969/j.issn.1001-0890.2011.04.017 [12] 徐鹏, 程远方, 刘丹, 等.爆炸压裂下围压对井壁破碎效果的影响[J].石油钻探技术, 2009, 37(6):22-25. doi: 10.3969/j.issn.1001-0890.2009.06.005Xu Peng, Cheng Yuanfang, Liu Dan, et al. The effects of ambient pressure on wellbore crushing effect under explosive fracturing[J]. Petroleum Drilling Techniques, 2009, 37(6):22-25. doi: 10.3969/j.issn.1001-0890.2009.06.005 [13] 林英松, 张宝康, 蒋金宝.爆生气体下孔壁岩石开裂的机理及影响因素研究[J].石油钻探技术, 2008, 5(3):50-54. doi: 10.3969/j.issn.1001-0890.2008.03.012Lin Yingsong, Zhang Baokang, Jiang Jinbao, et al. Mechanism and influencing factors on radial fractures' cracking and propagation under exploding gas[J]. Petroleum Drilling Techniques, 2008, 5(3):50-54. doi: 10.3969/j.issn.1001-0890.2008.03.012 [14] 陈德春, 孟红霞, 吴飞鹏, 等.岩石材料的冲击开裂机理[J].爆炸与冲击, 2008, 28(4):304-309. doi: 10.3321/j.issn:1001-1455.2008.04.004Chen Dechun, Meng Hongxia, Wu Feipeng, et al. Cracking mechanism of rock by pressure pulses[J]. Explosion and Shock Waves, 2008, 28(4):304-309. doi: 10.3321/j.issn:1001-1455.2008.04.004 [15] 吴飞鹏.高能气体压裂过程动力学模型与工艺技术优化决策研究[D].青岛: 中国石油大学(华东), 2009. http://cdmd.cnki.com.cn/article/cdmd-10425-2009221560.htm [16] 胡柳青.冲击载荷作用下岩石动态断裂过程机理研究[D].长沙: 中南大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10533-2006037311.htm [17] 王文龙.钻眼爆破[M].北京:煤炭工业出版社, 1984:240-246; 318. [18] 李夕兵.岩石冲击动力学[M].长沙:中南工业大学出版社, 1994:151-155.