Sensitivity analysis for impact resistance of steel plate concrete walls based on force vs. time-history analysis
-
摘要: 选取由表面钢板、拉结筋、剪力钉及混凝土组成的钢板混凝土结构墙为研究对象,运用经典显式非线性动力分析软件ANSYS/LS-DYNA,基于荷载时程分析法进行了一系列影响钢板混凝土结构墙抗冲击性能的参数敏感性分析。这些参数包括:墙体厚度、钢板厚度、拉结筋直径与间距等。分析结果表明,以上参数均会影响墙体的抗冲击性能,尤其是墙体与钢板的厚度以及拉结筋的间距。本文的研究工作对于核电厂核岛厂房钢板混凝土结构外墙的设计具有一定的指导与参考意义。Abstract: In this paper, to study preventive ways against incidents involving the impact of steel plate concrete (SC) structures, the steel plate concrete (SC) walls composed of surface steel plates, tie-bars, shear studs and concretes were selected as the object of investigation. The impact analysis of the walls was performed using ANSYS/LS-DYNA, the FEM code, based on the force vs. time-history analysis, in which a series of numerical sensitivity studies were conducted to evaluate the effect of several parameters affecting the behavior of the SC wall. These parameters include the thickness of the wall, the thickness of the steel plate, and the diameter and space of tie bars. The results show that they all have an effect on the impact resistance of the SC wall. This is especially true with the thickness of the wall and the steel plate, and the spacing distance between the tie bars. These studies will serve as guidance and reference for the design of SC structures that are to be used in nuclear power plant buildings.
-
表 1 钢板混凝土墙的材料参数
Table 1. Material parameters of steel plate concrete wall
材料 ρ/(kg·m-3) E/GPa υ fc/MPa ft/MPa 混凝土 2 400 35.2 0.2 46.0 4.2 钢板 7 800 206.0 0.3 400.0 400.0 拉结筋 7 800 206.0 0.3 330.0 330.0 剪力钉 7 800 206.0 0.3 330.0 330.0 -
[1] US Nuclear Regulatory Commission.10CFR50.150 Aircraft impact assessment[S]. Washington, DC: US Nuclear Regulatory Commission, 2009. [2] ERIN Engineering and Research, Inc. NEI 07-13, Revision 8P, methodology for performing aircraft impact assessments for new plant designs[S]. Palo Alto, 2011. [3] Tsubota H, Koshika N, Mizuno J, et al. Scale model tests of multiple barriers against aircraft impact: Part 1. Experimental program and test results[C]//Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology (SMiRT-15). Seoul, Korea, 1999: Ⅶ137-Ⅶ144. [4] Mizuno J, Koshika N, Sawamoto Y, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact part 1: Test program and results[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology, 2005: 2566-2579. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD200508001267.htm [5] Muhammad S, Zhu X Y, Pan R. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results[J]. Nuclear Engineering and Design, 2014, 273:653-667. doi: 10.1016/j.nucengdes.2014.03.031 [6] 朱秀云, 潘蓉, 林皋, 等.基于荷载时程分析法的钢筋混凝土和钢板混凝土墙的冲击响应对比分析[J].振动与冲击, 2014, 33(22):172-177. http://www.cnki.com.cn/article/cjfdtotal-zdcj201422031.htmZhu Xiuyun, Pan Rong, Lin Gao, et al. Comparative analysis of impact response with reinforced concrete and steel plate concrete walls based on force time-history analysis method[J]. Journal of Vibration and Shock, 2014, 33(22):172-177. http://www.cnki.com.cn/article/cjfdtotal-zdcj201422031.htm [7] 潘蓉, 吴婧姝, 张心斌.钢板混凝土结构在核电工程中应用的发展状况[J].工业建筑.2014, 44(12):1-7. http://d.old.wanfangdata.com.cn/Periodical/gyjz201412001Pan Rong, Wu Jingshu, Zhang Xinbin. Application and development of steel plate reinforced concrete structure in nuclear power engineering[J]. Industrial Construction, 2014, 44(12):1-7. http://d.old.wanfangdata.com.cn/Periodical/gyjz201412001 [8] Hallquist J Q. LS-DYNA keyword user's manual, revision 971[M]. California: Livermore Software Technology Corportion, 2007. [9] 中国国家核安全局.HAD101/04.核电厂厂址选择的外部人为事件[S].北京: 中国法制出版社, 1989. [10] Mullapudi T R S, Summers P, Hwan M. Impact analysis of steel plated concrete wall[C]//Structures Congress 2012.ASCE, 2012: 1881-1893. [11] Arros J, Doumbalski N. Analysis of aircraft impact to concrete structures[J]. Nuclear Engineering and Design, 2007, 237(12/13):1241-1249. https://www.sciencedirect.com/science/article/pii/S0029549306005875 [12] Abu-Odeh A. Modeling and simulation of bogie impacts on concrete bridge rails using LS-DYNA[C]//10th International LS-DYNA Users Conference. 2008. [13] Comite Euro-International du Beton. CEB-FIP model code 1990[M]. Trowbridge, Wiltshire, U K: Redwood Books, 1993. [14] Wu Y C, Crawford J E, Magallanes J M. Performance of LS-DYNA concrete constitutive models[C]//12th International LS-DYNA Users Conference, 2012. [15] 朱秀云, 潘蓉, 林皋, 等.基于ANSYS/LS-DYNA的钢板混凝土墙冲击实验的有限元分析[J].爆炸与冲击, 2015, 35(2):222-228. doi: 10.11883/1001-1455(2015)02-0222-07Zhu Xiuyun, Pan Rong, Lin Gao, et al. FEM analysis of impact experiments with steel plate concrete walls based on ANSYS/LS-DYNA[J]. Explosion and Shock Waves, 2015, 35(2):222-228. doi: 10.11883/1001-1455(2015)02-0222-07 [16] Mizuno J, Koshika N, Morikawa H, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact. Part 2: Simulation analyses of scale model impact tests[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology, 2005: 2580-2590.