Numerical simulation of friction sensitivity of high explosives
-
摘要: 为了研究炸药摩擦安全性,利用熔化摩擦模型对几种高能炸药的摩擦感度进行了数值模拟,结果符合实验,并根据热分解反应速率分析了感度规律。由于炸药熔点一般低于点火温度,所以基于一个考虑熔化现象的炸药摩擦模型,在炸药感度实验条件下进行了一维数值模拟,给出了炸药熔化结果和摩擦点火的时间:4种摩擦感度较弱的炸药包括DATB、NQ、TATB和TNT的点火时间的顺序即感度顺序符合实验结果,说明摩擦点火模型适应性。进一步结合炸药热分解反应速率的大小顺序,数值模拟证明,在一定摩擦强度下,点火顺序会发生交换,说明摩擦感度实验不能完全说明炸药摩擦感度强弱顺序。Abstract: In order to study the explosive friction safety, a numerical simulation of high explosive friction sensitivity experiment was performed based on a melting friction model. The numerical results agree with the experiment results. The law of friction sensitivity was then analyzed based on the thermal decomposition rate. As the melting temperature is usually lower than the ignition temperature, a one-dimension numerical simulation of sensitivity experiment was conducted using a model that took account of melting, and the ignition times and melting results were obtained. The order of four explosives' ignition time including DATB, NQ, TATB and TNT meet agree with the experiment results, proving the applicability of the model. Furthermore, based on the order of the thermal decomposition rate, the numerical results have proved that, when the friction strength reaches certain degrees, the order of ignition time will change, which means that the sensitivity experiment cannot fully describe the order of the explosive sensitivity.
-
表 1 单质炸药的摩擦感度[10]
Table 1. Friction sensitivity of simple explosive
炸药 η/% 炸药 η/% HMX 92~100 TNT 4~6 PETN 92, 100 TATB 0~4 RDX 76±8 DATB 0~4 Tetryl 12 NQ 0 材料 ρ/(kg·m-3) c/(J·kg-1·K-1) k/(J·m-1·s-1·K-1) km/(J·m-1·s-1·K-1) Q/(MJ·kg-1) Ea/(kJ·mol-1) Z/s-1 L/(kJ·kg-1) Tm/K TNT 1 654 1 062.76 0.260 3 0.266 20 1.26 144 2.51×1011 521 353.9 DATB 1 834 1 092.05 0.259 0 0.259 70 1.26 194 1.17×1015 344 559.0 TATB 1 930 899.58 0.543 9 0.182 34 2.51 251 3.18×1019 652 721.0 NQ 1 690 1 125.52 0.410 0 0.626 40 2.09 87.4 2.87×107 402 518.0 Fe 7 840 465 49.8 - - - - - - 表 3 3种炸药的点火时间、点火温度和熔化区厚度
Table 3. Ignition time, temperature and molten zone thickness for three explosives
炸药 p/MPa ti/s Ti/K hm/μm TATB 400 0.52×10-3 860 1.03 40 0.026 770 3.48 4 0.65 690 0 0.4 28 640 0 DATB 400 0.74×10-3 940 5.71 40 0.075 790 4. 11 4 4.4 690 203.5 0.4 206 620 712. 1 NQ 400 2.6 1 300 22.71 40 0.095 800 85. 87 4 2.7 640 242. 4 0.4 19 540 3 517.3 -
[1] Asay B W. Shock wave science and technology reference library: Non-shock initiation of explosives[M]. Springer, 2010:537-554. [2] 戴振东.摩擦体系热力学引论[M].北京:国防工业出版社, 2002:1-4. [3] Glenn J G, Foster J C, Gunger M. A test method and model to determine the thermal initiation properties of an energetic material in a low pressure long duration event[C]//Proceedings of Twelfth Symposium (International) on Detonation. San Diego, California, 2002: 299-307. [4] Birk A, Baker P, Kooker D E. Nondetonative explosions and burning of composition-B explosive[C]//Proceedings of Seventh twelfth Symposium (International) on Detonation. San Diego, California, 2002: 248-257. [5] Diens J K. A fractional hot-spot theory for peopellant sensitivity[C]//Proceedings of Second JANNAF Propulsion Syetems Hazards Meeting. China Lake, California, 1982: 200-208. [6] Hoffman D, Chandler J. Aspects of the tribology of the plastic bonded explosive LX-04[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(6):368-373. doi: 10.1002/(ISSN)1521-4087 [7] Wu Yanqing, Huang Fenglei. Frictional properties of explosive single crystals of HMX, RDX and PETN and a model of impact ignition by frictional heating[C]//Proceedings of Fourteenth Symposium (International) on Detonation. Coeur d'Alene, Idaho, 2010: 324-333. [8] 林文洲, 洪滔.高能炸药摩擦感度理论初步研究[J].含能材料, 2007, 15(1):12-15. doi: 10.3969/j.issn.1006-9941.2007.01.004Lin Wenzhou, Hong Tao. Theoretical analysis on friction sensitivity of high explosive[J]. Chinese Journal of Energetic Materials, 2007, 15(1):12-15. doi: 10.3969/j.issn.1006-9941.2007.01.004 [9] 林文洲.摩擦条件下的炸药热爆炸问题的研究[D].北京: 中国工程物理研究院研究生部, 2007. [10] 董海山, 周芬芬.高能炸药及相关物性能[M].北京:科学出版社, 1989:107-109. [11] 孙锦山, 朱建士.理论爆轰物理[M].北京:国防科技出版社, 1995:325-327. [12] 陶文铨.数值传热学[M].西安:西安交通大学出版社, 1988:590-592. [13] Gibbs T R, Popolato A. LASL explosive property data[M]. USA: University of California Press, 1980:37-176. [14] Hirsehfelder J O, Curtis C F, Bird R B. Molecular theory of gases and liquids[M]. USA: University of Wisconsin Press, 1954:100-101.