纵向磁场对聚能射流极限拉伸系数的影响

马彬 黄正祥 祖旭东 肖强强 贾鑫

马彬, 黄正祥, 祖旭东, 肖强强, 贾鑫. 纵向磁场对聚能射流极限拉伸系数的影响[J]. 爆炸与冲击, 2016, 36(6): 759-766. doi: 10.11883/1001-1455(2016)06-0759-08
引用本文: 马彬, 黄正祥, 祖旭东, 肖强强, 贾鑫. 纵向磁场对聚能射流极限拉伸系数的影响[J]. 爆炸与冲击, 2016, 36(6): 759-766. doi: 10.11883/1001-1455(2016)06-0759-08
Ma Bin, Huang Zhengxiang, Zu Xudong, Xiao Qiangqiang, Jia Xin. Influence of longitudinal magnetic field on coefficient ofultimate elongation of shaped charge jet[J]. Explosion And Shock Waves, 2016, 36(6): 759-766. doi: 10.11883/1001-1455(2016)06-0759-08
Citation: Ma Bin, Huang Zhengxiang, Zu Xudong, Xiao Qiangqiang, Jia Xin. Influence of longitudinal magnetic field on coefficient ofultimate elongation of shaped charge jet[J]. Explosion And Shock Waves, 2016, 36(6): 759-766. doi: 10.11883/1001-1455(2016)06-0759-08

纵向磁场对聚能射流极限拉伸系数的影响

doi: 10.11883/1001-1455(2016)06-0759-08
基金项目: 

国家自然科学基金项目 11272157

高等学校博士学科点专项科研基金项目 20123219120052

详细信息
    作者简介:

    马彬(1988—),男,博士研究生

    通讯作者:

    黄正祥, huangyu@mail.njust.edu.cn

  • 中图分类号: O358

Influence of longitudinal magnetic field on coefficient ofultimate elongation of shaped charge jet

  • 摘要: 在分析纵向磁场能够增强聚能射流稳定性的基础上,根据聚能射流的运动方程以及聚能射流的塑性失稳条件,推导得到了聚能射流在纵向磁场中的极限拉伸系数计算公式,并计算了有、无磁场情况下极限拉伸系数的比值。通过两种炸高下的实验研究对理论模型进行了验证。结果表明:由于磁场的存在而引起的电磁力抑制了聚能射流颈缩的发展,进而延长了射流成型的惯性拉伸阶段,最终使聚能射流在磁场中的极限拉伸系数在一定程度上得到了增加;理论和实验所得结果吻合较好。运用所建立模型可以较准确地反映磁场对聚能射流极限拉伸系数的影响。
  • 图  1  射流与磁场耦合示意

    Figure  1.  Illustration of interaction of jet with magnetic field

    图  2  聚能装药

    Figure  2.  Photograph of shaped charge

    图  3  起爆后30和50 μs的X射线照片

    Figure  3.  X-rays of shaped charge jet at 30 and 50 μs after initiation

    图  4  电路结构示意图

    Figure  4.  Diagram of experimental circuit

    图  5  强磁体结构和实物

    Figure  5.  High field magnet: structure and actual image

    图  6  聚能装药和爆炸开关的设置

    Figure  6.  Shaped charge and explosive switch

    图  7  炸高650 mm情况下聚能射流与磁场的耦合时序图

    Figure  7.  Sequence diagram of SCJ coupled with a magnetic fieldwith standoff of 650 mm

    图  8  动态实验放电电流信号

    Figure  8.  Discharge current of dynamic experiments

    图  9  射流单元通过强磁体时在轴线上的磁感应强度

    Figure  9.  Magnetic induction intensities of element of SCJ passing through high field magnet

    图  10  极限拉伸系数的比值随磁感应强度的变化

    Figure  10.  Change of ratio of coefficient ofultimate elongation with magnetic induction intensity

    图  11  聚能射流侵彻后的靶板剖面

    Figure  11.  Split targets penetrated by SCJ

    表  1  测量参数

    Table  1.   Measured parameters

    单元 结构及连接特征 L/μH R/mΩ C/μF
    电容器组 4台并联 - - 77.9
    强磁体 矩形(2 mm×4 mm)截面铜导线双层并联 12 6.6 -
    连接导线 截面为41.5 mm2的铜排 95 32.8 -
    下载: 导出CSV

    表  2  不同速度的射流单元进入和离开强磁体的相关参数

    Table  2.   Parameters of jet elements with different velocities entering and leaving high field magnet

    h/mm v/(mm·μs-1) t1/μs t2/μs Δt/μs B/T
    6.5 38.62 61.69 23.1 1.544
    6 42.77 67.77 25.0 1.673
    5 53.56 83.56 30.0 1.977
    490 4 69.75 107.25 37.5 2.337
    3 96.73 146.73 50.0 2.654
    2 150.70 225.70 75.0 2.239
    1 312.60 462.60 150.0 1.666
    6 110.0 114.4 4.4 0.450
    5 110.0 135.5 25.5 0.424
    4.78 110.0 141.4 31.4 0.520
    650 4 129.7 167.2 37.5 1.218
    3 170.0 220.0 50.0 2.270
    2 250.7 325.7 75.0 2.376
    1 492.5 642.5 150.0 1.712
    下载: 导出CSV

    表  3  理论计算与实验对比

    Table  3.   Comparison of theoretical calculation with experiments

    h/mm B/T l/mm αexp αth εα/%
    490 0 8.01 1 1 0
    490 2.02 10.29 1.28 1.31 2.3
    650 0 9.18 1 1 0
    650 1.76 11.60 1.26 1.20 4.8
    下载: 导出CSV
  • [1] Walters W P, Zukas J A. Fundamentals of shaped charges[M]. John Wiley, 1989.
    [2] Chou P C, Carleone J. The stability of shaped-charge jets[J]. Journal of Applied Physics, 1977, 48(10):4187-4195. doi: 10.1063/1.323456
    [3] Babkin A V, Ladov S V, Marinin V M, et al. Regularities of the stretching and plastic failure of metal shaped-charge jets[J]. Journal of Applied Mechanics and Technical Physics, 1999, 40(4):571-580. doi: 10.1007/BF02468430
    [4] Fedorov S V, Babkin A V, Ladov S V, et al. Possibilities of controlling the shaped-charge effect by electromagnetic actions[J]. Combustion, Explosion and Shock Waves, 2000, 36(6):792-808. doi: 10.1023/A:1002867025761
    [5] Hirsch E. A model explaining the rule for calculating the break-up time of homogeneous ductile metals[J]. Propellants, Explosives, Pyrotechnics, 1981, 6(1):11-14. doi: 10.1002/(ISSN)1521-4087
    [6] Hirsch E. A formula for the shaped charge jet breakup-time[J]. Propellants, Explosives, Pyrotechnics, 1979, 4(5):89-94. doi: 10.1002/(ISSN)1521-4087
    [7] Chou P C, Flis W J. Recent developments in shaped charge technology[J]. Propellants, Explosives, Pyrotechnics, 1986, 11(4):99-114. doi: 10.1002/(ISSN)1521-4087
    [8] Curtis J P. Axisymmetric instability model for shaped charge jets[J]. Journal of Applied Physics, 1987, 61(11):4978-4985. doi: 10.1063/1.338317
    [9] Hennequin E. Modelling of the shaped charge jet break-up[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(4):181-185. doi: 10.1002/(ISSN)1521-4087
    [10] Romero L A. The instability of rapidly stretching plastic jets[J]. Journal of Applied Physics, 1989, 65(8):3006-3016. doi: 10.1063/1.342718
    [11] Babkin A V, Ladov S V, Marinin V M, et al. Characteristics of inertially stretching shaped-charge jets in free flight[J]. Journal of Applied Mechanics and Technical Physics, 1997, 38(2):171-176. doi: 10.1007/BF02467897
    [12] Littlefield D L, Powell J D. The effect of electromagnetic fields on the stability of a uniformly elongating plastic jet[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(2):2240. http://cn.bing.com/academic/profile?id=eb3d9e9f7284e2e08798cb78960bc5ba&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Fedorov S V, Babkin A V, Ladov S V. Salient features of inertial stretching of a high-gradient conducting rod in a longitudinal low-frequency magnetic field[J]. Journal of Engineering Physics and Thermophysics, 2001, 74(2):364-374. doi: 10.1023/A:1016656522643
    [14] Fedorov S V. Magnetic-field amplification in metal shaped-charge jets during their inertial elongation[J]. Combustion, Explosion and Shock Waves, 2005, 41(1):106-113. doi: 10.1007/s10573-005-0012-4
    [15] Fedorov S V, Babkin A V, Ladov S V. Influence of the magnetic field produced in the liner of a shaped charge on its penetrability[J]. Combustion, Explosion and Shock Waves, 1999, 35(5):598-599. doi: 10.1007/BF02674508
    [16] Tucker T J, Toth R P. EBW1: A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[R]. Albuquerque, NM, USA: Sandia Labs, 1975.
    [17] Singh M, Bola M S, Prakash S. Determination of dynamic tensile strength of metals from jet break-up studies[C]//Proceedings of the 19th International Symposium on Ballistics. Interlaken, Switzerland, 2001: 7-11.
    [18] Allison F E, Bryan G M. Cratering by a train of hypervelocity fragments[C]//Proceedings of 2nd Hypervelocity Impact Effects Symposium. 1957: 81.
    [19] Walters W P, Summers R L. An analytical model for the particulation of a jet from a shaped charge liner[J]. Propellants, Explosives, Pyrotechnics, 1995, 20(2):58-63. doi: 10.1002/(ISSN)1521-4087
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  4375
  • HTML全文浏览量:  1249
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-06-11
  • 刊出日期:  2016-11-25

目录

    /

    返回文章
    返回