Experimental research of silver aerosol source-termunder explosive detonation
-
摘要: 为研究钚气溶胶生成规律及源项分布,提出了一种密封环境下的金属气溶胶源项实验方法,利用爆炸容器及气溶胶采样器等实验设备,开展了钚替代材料银的气溶胶源项生成实验,分析了空气动力学直径小于10 μm的银气溶胶源项分布特性,并与外场扩散试验中钚气溶胶数据进行了对比。进一步采用不同炸药及加载装置,对相同银片样品进行加载实验,研究了加载峰值压力对银气溶胶源项分布的影响。研究结果表明,金属银可作为替代材料研究爆轰加载条件下钚气溶胶的源项参数,在一定实验条件下,二者归一化积累质量分布具有较高的一致性;爆轰加载产生的银气溶胶中,较小粒径气溶胶质量含量较高。气溶胶总量与加载峰值压力呈二次函数分布,当峰值压力超过某个临界值时,气溶胶总量将达到极值;此外,通过对同发次实验的3次不同采样数据进行分析,发现了较明显的气溶胶凝并和沉降现象。Abstract: An experimental method in the confinement vessel for silver aerosol source-term investigation of metal under high explosive detonation was designed to simulate the plutonium aerosol source-term of nuclear devices under the circumstance of high explosive detonation. Seven silver source-term experiments under variable explosive pressure were conducted in the aerosol facility and the size distribution characteristics of the silver aerosol with an aerodynamic diameter less than 10 μm were examined and compared with the data from the field test. The results show that the silver aerosol source-term under specific conditions has good agreement with the plutonium aerosol source-term obtained by the U. S. government under test conditions simulating an open-air detonation accident of nuclear device. The amount of the silver aerosolized in the experiment is determined by the peak value of high explosive pressure that acted on the silver plate and exhibited a quadratic polynomial. The silver aerosol with an aerodynamic diameter ranging from 0.7 to 3.3 μm account for the major part of the silver aerosol induced by high explosive detonation. When the peak value exceeds a certain critical value, the total amount of aerosol reaches the maximum. Settlement and combination of aerosol were observed in the comparative analysis of the size-mass distribution of the samples collected at different times after the explosion.
-
Key words:
- mechanics of explosion /
- size distribution /
- cumulative mass /
- silver aerosol /
- source-term /
- plutonium aerosol
-
表 1 实验状态参数
Table 1. Experimental details
实验 炸药 加载方式 p/GPa 1 RHT-901 平面对碰 119.0 2 RHT-901 平面对碰 119.0 3 RHT-901 平面对碰 119.0 4 RHT-901 单面加载 45.85 5 TNT 平面对碰 83.11 6 TNT 单面加载 33.12 7 RTB-904 平面对碰 40.82 表 2 银气溶胶采样数据
Table 2. Data of collected samples of silver aerosol
采样 m/μg M/μg t/s 0~0.4 0.4~0.7 0.7~1.1 1.1~2.1 2.1~3.3 3.3~4.7 4.7~5.8 5.8~9 9~10 1 1.01 48.6 85 59.5 122 31.8 14.5 21.4 14.9 398.71 58 2 1.01 6.06 42.2 115 33.4 17.2 8.96 10.5 13.4 247.73 46 3a 0.88 9.29 58.6 126 26.5 5.12 1.8 1.92 1.84 231.95 387 3b 0.39 0.32 1.32 2.43 1.7 0.82 0.31 0.86 1.46 9.61 3 600 3c 0.28 0.28 0.7 1.62 1.89 1.86 1.17 2.83 3.95 14.58 7 200 4 0.34 24.5 505 1 080 261 49.8 18.6 22.2 14.2 1 975.64 34 5 7.03 24.3 292 924 437 202 69.5 49.9 66.6 2 072.33 34 6 1.74 33.6 90.1 372 597 104 35.5 29.1 25.8 1 288.84 33 7 1.75 44.4 137 367 493 320 114 109 73.2 1 659.35 30 表 3 电化学消解银标样试液浓度
Table 3. Calibration error of samples
编号 ρs/(μg·L-1) ρm/(μg·L-1) 1 5 5.021 2 30 30.592 3 30 30.471 4 30 29.982 -
[1] Martz J C, Haschke J M. A mechanism for combustive heating and explosive dispersal of plutonium[J]. Journal of Alloys and Compounds, 1998, 266(1):90-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f894227bf1e9f86cdc14835a6d425c8c [2] Haschke J M, Martz J C. Oxidation kinetics of plutonium in air from 500 to 3 500 ℃: Application to source terms for dispersal[J]. Journal of Alloys and Compounds, 1998, 266(1):81-89. http://cn.bing.com/academic/profile?id=0558381b881cf85ea3a05246dc76542e&encoded=0&v=paper_preview&mkt=zh-cn [3] 刘文杰, 胡八一, 李庆忠.核事故条件下钚气溶胶源项研究综述[J].安全与环境学报, 2011, 11(5):259-263. doi: 10.3969/j.issn.1009-6094.2011.05.058Liu Wenjie, Hu Bayi, Li Qingzhong. Review of plutonium aerosol source-term in nuclear accident[J]. Journal of Safety and Environment, 2011, 11(5):259-263. doi: 10.3969/j.issn.1009-6094.2011.05.058 [4] Stewart K, Thomas D C, Terry J L, et al. Atomic weapons research establishment[R]. AWRE REPORT NO.0-29/65, 1965. [5] Condit R H. Plutonium dispersal in fires: Summary of what is known[R]. UCRL-ID-114164, 1993. [6] Titus R W. Operation roller coaster: Project officers report-project 2.4[R]. POR-2504, 1965. [7] Boughton B A, DeLaurentis J M. An integral model of plume rise from high explosive detonations[C]//Davis L R, Catton I. Buoyant plumes: Proceedings of the 24th National Heat Transfer Conference. Pittsburgh, PA, USA: ASME, 1987: 27-32. [8] Boughton B A, DeLaurentis J M, Dunn W E. A note on a stochastic model of turbulent dispersion in the atmosphere[J]. Boundary-Layer Meteorology, 1989, 48(4):443-444. doi: 10.1007/BF00123065 [9] Shinn J H, Homan D N, Hofmann C B. A summary of plutonium aerosol studies: Resuspension at the Nevada Test Site[R]. UCRL-90746, 1986. [10] Shinn J H. Complementary Pu resuspension study at Palomares, Spain[R]. UCRL-ID-150980, 2002. [11] Johansen M P, Kamboj S, Kuhne W W. Whole-organism concentration ratios for plutonium in wildlife from past US nuclear research data[J]. Journal of Environmental Radioactivity, 2013, 126(6):412-419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e284761cf88b709bea1c906334007bd [12] Johansen M P, Child D P, Davis E, et al. Plutonium in wildlife and soils at the Maralinga legacy site: Persistence over decadal time scales[J]. Journal of Environmental Radioactivity, 2014, 131(2):72-80. [13] Sagartz M J. Violent reaction source term study[R]. SAND-943252, 1995. [14] 伍怀龙, 田东风, 郝樊华, 等.钚气溶胶环境中惰性气体氪迁移过程研究[J].物理学报, 2011, 60(3):162-165. http://d.old.wanfangdata.com.cn/Periodical/wlxb201103026Wu Huailong, Tian Dongfeng, Hao Fanhua, et al. Investigation on inert gases transport process in plutonium aerosol[J]. Acta Physica Sinica, 2011, 60(3):162-165. http://d.old.wanfangdata.com.cn/Periodical/wlxb201103026 [15] Homann S G, Wilson D V. Hotspot health physics code: Version8.0[R]. UCRL-MA-118617, 1995. [16] Shreve J D. Operation roller coaster: Scientific directors report[R]. DASA-1644, 1965. [17] Steele C M, Wald T L, Chanin D I. Plutonium explosive dispersal modeling using the MACCS2 computer vode[R]. LA-UR-98-1901, 1998. [18] Boughton B A, Delaurentis J M. Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations[R]. SAND92-2069-UC-702, 1992. [19] Beasely R R. Operation roller coaster: Technical photography[R]. POR-2519, 1965. [20] Church H W. Cloud rise from high-explosives detonation[R]. SC-RR-68-903, 1969. [21] Shinn J H. Technical basis for air pathway assessment of resuspended radioactive aerosols: LLNL experiences at seven sites around the world[R]. UCRL-JC-115045, 1993.