Critical ricochet performance of penetrator impacting concrete targets
-
摘要: 为了保证钻地战斗部打击防护层目标时不发生跳弹,需要对弹体侵彻目标的临界跳弹角度进行分析和估算。开展了一定大长径比弹体斜侵彻混凝土的跳弹实验,分析了在250~430 m/s速度下弹体侵彻30和60 MPa钢筋混凝土的临界跳弹角度,给出了弹体临界跳弹角度包络线。当靶板强度相同时,随着侵彻速度的增加,弹体的临界跳弹倾角增大,增大的趋势逐渐变缓;在相同侵彻速度下,随着靶板强度的增加,弹体的临界跳弹倾角减小;经验公式分析得到的弹体临界跳弹倾角偏低于实验,但偏差基本在3°以内。Abstract: The critical ricochet angle of a penetrator impacting hard targets obliquely needs to be analyzed and estimated to ensure that no ricochet occur while the penetrator hits the targets. In this work the experiments on the ricochet performance of the penetrator with a big length-to-diameter ratio impacting reinforced concrete targets at a velocity of 250-430 m/s were conducted, the critical ricochet angles in which it impacts the reinforced concrete targets possessing a compressive strength of 30 MPa and 60 MPa respectively were analyzed and estimated, and the envelope curves of the critical ricochet angle were obtained. The results show that, when the intensity of the target is maintained the same, the projectile's critical ricochet angle increases with the increase of the penetration velocity. This increase gradually slows down. At the same penetration velocity, with the increase of the targets' strength, the projectile's critical ricochet angle decreases. The projectile's critical ricochet angles from the analysis of the empirical formula were lower than those from the experiments, but the deviation is less than 3°
-
[1] Kanchibotla S. Modeling fines in blast fragmentation and its impact on crushing and grinding[C]//A Conference on Rock Breaking. Kalgoorlie, Australia, 1999: 37-44. [2] Goldsmith W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering, 1999, 22(2/3):95-395. doi: 10.1016-S0734-743X(98)00031-1/ [3] Frew D J, Forrestal M J, Hanchak S J. Penetration experiments with limestone targets and ogive-nose steel projectiles[J]. Journal of Applied Mechanics, 2000, 67(4):841-845. doi: 10.1115/1.1331283 [4] Lee W, Lee H J, Shin H. Ricochet of a tungsten heavy alloy long-rod projectile from deformable steel plates[J]. Physics of Journal D: Applied Physicss, 2002, 35(20):2676-2686. doi: 10.1088/0022-3727/35/20/331 [5] 刘晋.跳弹机理研究与数值模拟[D].太原: 中北大学, 2011. [6] 吴荣波, 陈智刚, 王庆华.入射角对跳弹现象影响的数值模拟[J].设计与研究, 2011, 38(10):18-21. http://d.old.wanfangdata.com.cn/Periodical/jx201110005Wu Rongbo, Chen Zhigang, Wang Qinghua. Numerical simulation on the impact effect of incidence angle impacting ricochet[J]. Design and Research, 2011, 38(10):18-21. http://d.old.wanfangdata.com.cn/Periodical/jx201110005 [7] Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International of Solid Structures, 1997, 34(31):4127-4146. http://cn.bing.com/academic/profile?id=9f6cbc41cc8e41622e2eccbe35f1dfdd&encoded=0&v=paper_preview&mkt=zh-cn [8] Young C W. Depth prediction for earth-penetrating projectiles[J]. International of the Soil Mechanics and Foundations Division, 1969, 95(3):803-817. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lUah97xqxGXvsAaLy7SqJAgJ7gkY04c2oRnetQsqrxw= [9] Young C W. Development of empirical equation for predicting depth of an earth penetrating projectile[R]. SC-DR-67-60, 1967. [10] Young C W. Equation for predicting earth penetration by projectiles: An update[R]. SAND-88-0013, 1988. [11] Young C W. Penetration equations[R]. SAND-97-2426, 1997. 期刊类型引用(8)
1. 贾进章,田秀媛. 瓦斯爆炸抑制研究进展及发展趋势. 安全与环境学报. 2025(01): 95-107 . 百度学术
2. 杨克,李雪瑞,纪虹,郑凯,邢志祥,蒋军成. 改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验. 爆炸与冲击. 2024(07): 174-187 . 本站查看
3. 张保勇,崔嘉瑞,陶金,王亚军,秦艺峰,魏春荣,张迎新. 不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究. 爆炸与冲击. 2023(02): 170-180 . 本站查看
4. 段征,路长,班成伟,刘金刚,郭洪江,李明月. 封闭支管条件下ABC干粉抑爆机制研究. 火工品. 2023(02): 72-76 . 百度学术
5. 徐景德,田思雨,张延炜,张亮. 瓦斯爆炸主动式阻隔爆技术研究进展. 华北科技学院学报. 2022(04): 71-77 . 百度学术
6. 乔征龙,马恒,邓立军. 基于Charlette模型的柔性障碍物对瓦斯爆炸的影响研究. 安全与环境学报. 2022(05): 2420-2427 . 百度学术
7. 段玉龙,杨燕铃,李元兵,裴蓓,姚新友,王硕,米红甫. 滑移装置抑制甲烷爆炸影响分析. 中国安全生产科学技术. 2021(04): 122-127 . 百度学术
8. 段玉龙,李元兵,杨燕铃,龙凤英,俞树威,黄俊,卜云兵. 细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响. 高压物理学报. 2021(05): 182-188 . 百度学术
其他类型引用(5)
-