Critical ricochet performance of penetrator impacting concrete targets
-
摘要: 为了保证钻地战斗部打击防护层目标时不发生跳弹,需要对弹体侵彻目标的临界跳弹角度进行分析和估算。开展了一定大长径比弹体斜侵彻混凝土的跳弹实验,分析了在250~430 m/s速度下弹体侵彻30和60 MPa钢筋混凝土的临界跳弹角度,给出了弹体临界跳弹角度包络线。当靶板强度相同时,随着侵彻速度的增加,弹体的临界跳弹倾角增大,增大的趋势逐渐变缓;在相同侵彻速度下,随着靶板强度的增加,弹体的临界跳弹倾角减小;经验公式分析得到的弹体临界跳弹倾角偏低于实验,但偏差基本在3°以内。Abstract: The critical ricochet angle of a penetrator impacting hard targets obliquely needs to be analyzed and estimated to ensure that no ricochet occur while the penetrator hits the targets. In this work the experiments on the ricochet performance of the penetrator with a big length-to-diameter ratio impacting reinforced concrete targets at a velocity of 250-430 m/s were conducted, the critical ricochet angles in which it impacts the reinforced concrete targets possessing a compressive strength of 30 MPa and 60 MPa respectively were analyzed and estimated, and the envelope curves of the critical ricochet angle were obtained. The results show that, when the intensity of the target is maintained the same, the projectile's critical ricochet angle increases with the increase of the penetration velocity. This increase gradually slows down. At the same penetration velocity, with the increase of the targets' strength, the projectile's critical ricochet angle decreases. The projectile's critical ricochet angles from the analysis of the empirical formula were lower than those from the experiments, but the deviation is less than 3°
-
[1] Kanchibotla S. Modeling fines in blast fragmentation and its impact on crushing and grinding[C]//A Conference on Rock Breaking. Kalgoorlie, Australia, 1999: 37-44. [2] Goldsmith W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering, 1999, 22(2/3):95-395. doi: 10.1016-S0734-743X(98)00031-1/ [3] Frew D J, Forrestal M J, Hanchak S J. Penetration experiments with limestone targets and ogive-nose steel projectiles[J]. Journal of Applied Mechanics, 2000, 67(4):841-845. doi: 10.1115/1.1331283 [4] Lee W, Lee H J, Shin H. Ricochet of a tungsten heavy alloy long-rod projectile from deformable steel plates[J]. Physics of Journal D: Applied Physicss, 2002, 35(20):2676-2686. doi: 10.1088/0022-3727/35/20/331 [5] 刘晋.跳弹机理研究与数值模拟[D].太原: 中北大学, 2011. [6] 吴荣波, 陈智刚, 王庆华.入射角对跳弹现象影响的数值模拟[J].设计与研究, 2011, 38(10):18-21. http://d.old.wanfangdata.com.cn/Periodical/jx201110005Wu Rongbo, Chen Zhigang, Wang Qinghua. Numerical simulation on the impact effect of incidence angle impacting ricochet[J]. Design and Research, 2011, 38(10):18-21. http://d.old.wanfangdata.com.cn/Periodical/jx201110005 [7] Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International of Solid Structures, 1997, 34(31):4127-4146. http://cn.bing.com/academic/profile?id=9f6cbc41cc8e41622e2eccbe35f1dfdd&encoded=0&v=paper_preview&mkt=zh-cn [8] Young C W. Depth prediction for earth-penetrating projectiles[J]. International of the Soil Mechanics and Foundations Division, 1969, 95(3):803-817. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lUah97xqxGXvsAaLy7SqJAgJ7gkY04c2oRnetQsqrxw= [9] Young C W. Development of empirical equation for predicting depth of an earth penetrating projectile[R]. SC-DR-67-60, 1967. [10] Young C W. Equation for predicting earth penetration by projectiles: An update[R]. SAND-88-0013, 1988. [11] Young C W. Penetration equations[R]. SAND-97-2426, 1997.