Control of delay time characterized by distribution of peak velocity-displacement vibration of millisecond blasting
-
摘要: 为了通过振动波传播规律研究微差爆破延时控制,改善爆破振动和提高爆炸能利用,选取普通雷管和澳瑞凯高精度雷管进行不同段别延期起爆对比实验,试爆过程对振动波测振。基于振动波函数优化理论基础,对实测数据和波状谱处理分析,总结了不同微差时间下振动波传播规律及速度峰值、主频、频带能量、总能量等变化特征,根据该特征发现振动波速度图谱和该速度积分所得位移图谱中两者最大值对应时间点相同。依据此速度峰值-振动位移分布特征,对某实测简单振动波进行高斯多峰拟合,结果表明:该波段能量最大化时间点为60 ms左右,振动最小的时间点为25 ms左右。Abstract: In order to improve the blasting vibration and boost the efficiency of blasting energy, this paper mainly focuses on the delay time control research through transmission law. We performed an experiment with a delayed-detonation scheme in different period, which selects common detonator and Orica high precision detonator. The measured vibration of the earthquake wave is based on seismic wave function optimization theory foundation. The measured data and wavy figure were acquired through it, then we found out the variation characteristics of the rules of earthquake wave propagation, peak velocity, domain frequency, band energy and the total energy in different delayed period. At the same time, according to the characteristics to find velocity map which Synthesized by triaxialvibration wave and displacement map which assembled by speed Calculus correspond to the maximum in same time. On the basis of peak velocity-vibration displacement distribution characteristics, fitting method for Gaussian multi-peak is applied for measured vibration wave, to give the band energy maximize time points about t=60 ms, blasting vibration around the minimum time for t=25 ms.
-
表 1 普通雷管爆区Ⅱ测点1数据
Table 1. Data of measuring point 1 on ordinary detonator blasting area Ⅱ
分量 vm/(cm·s-1) tm/s fh/Hz fFFT/Hz x方向 1.265 5 0.370 8.5 10.4 y方向 0.975 3 0.337 16.9 9.5 z方向 0.948 5 0.165 33.2 8.5 合成 1.525 7 0.370 表 2 澳瑞凯雷管Ⅱ爆区测点1数据
Table 2. Data of measuring point 1 on Orica detonator blasting area Ⅱ
分量 vm/(cm·s-1) tm/s fh/Hz fFFT/Hz x方向 0.378 5 0.244 55.5 48.9 y方向 0.313 1 0.263 53.3 16.3 z方向 0.281 2 0.183 28.1 88.1 合成 0.436 8 0.245 表 3 测振数值汇总
Table 3. Vibration numerical reservoir
实验场所 tm/s vm/(cm·s-1) fFFT/Hz tm/s vm/(cm·s-1) fFFT/Hz tm/s vm/(cm·s-1) fFFT/Hz 测点1 测点2 测点3 普通雷管爆区Ⅰ 0.257 1.847 11.6 0.248 2.043 11.9 0.274 1.947 11.5 普通雷管爆区Ⅱ 0.370 1.525 9.5 0.382 1.402 10.4 0.355 1.503 9.9 普通雷管爆区Ⅲ 0.413 2.734 15.6 0.409 2.632 15.1 0.425 2.691 14.8 澳瑞凯雷管爆区Ⅰ 0.223 0.491 89.4 0.211 0.515 88.1 0.209 0.508 86.3 澳瑞凯雷管爆区Ⅱ 0.245 0.437 80.6 0.253 0.426 78.5 0.257 0.411 79.4 澳瑞凯雷管爆区Ⅲ 0.294 0.533 91.6 0.301 0.545 90.7 0.289 0.524 89.5 表 4 最小峰值区间参数
Table 4. Minimum peak interval parameters
Peak Peak Type Area Intg FWHM Max Height Center Grvty Area Intg P 1 Gaussian 19.619 37 2.480 02 10.642 79 0.557 18 32.878 87 2 Gaussian 1.200 96 0.112 51 10.028 08 2.610 43 2.012 61 3 Gaussian 3.291 24 0.826 76 3.739 80 3.431 74 5.515 58 4 Gaussian 5.239 72 0.802 84 6.131 21 4.658 54 8.780 91 5 Gaussian 3.730 14 0.662 72 5.287 66 5.315 68 6.251 11 6 Gaussian 2.994 56 0.629 26 4.470 68 6.655 14 5.018 40 7 Gaussian 5.606 45 0.884 70 5.953 34 7.375 81 9.395 49 8 Gaussian 8.836 37 1.174 33 7.107 50 8.729 28 14.808 32 表 5 最小峰值时间-速度方差
Table 5. Minimum peak time and velocity variance
项目 自由度 平方和 均方 F统计量 检验P值 回归 27 44 107.122 67 1 633.597 14 2 567.263 92 0 残差 973 619.137 75 0.136 32 未修正总值 1 000 44 726.160 42 修正总值 999 8 539.780 74 表 6 最大峰值区间参数
Table 6. Maximum peak interval parameters
Peak Peak Type Area Intg FWHM Max Height Center Grvty Area Intg P 1 Gaussian 5.742 72 0.899 16 5.999 99 2 13.636 32 2 Gaussian 6.699 90 0.899 16 7 3 15.909 17 3 Gaussian 7.656 97 0.899 16 7.999 98 4 18.181 76 4 Gaussian 2.871 39 0.899 16 3 5 6.818 23 5 Gaussian 9.571 23 0.899 16 9.999 99 6 22.727 25 6 Gaussian 3.828 51 0.899 16 4 7 9.090 94 7 Gaussian 5.742 73 0.899 16 5.999 99 8 13.636 33 表 7 最大峰值时间-速度方差
Table 7. Maximum peak time and velocity variance
项目 自由度 平方和 均方 F统计量 检验P值 回归 21 26 275.186 48 1 251.199 36 6.311 6×1013 0 残差 979 1.907 5×10-8 1.982 38×10-11 未修正总值 1 000 26 275.186 48 修正总值 999 8 539.780 74 -
[1] Kim D S, Lee J S. Propagation and attenuation characteristics of various ground vibrations[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(1): 115-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a81d6f8941bbf8066e5959447831706d [2] 娄建武, 龙源.爆破震动信号的特征提出及识别技术研究[J].振动与冲击, 2003, 22 (3): 80-82. doi: 10.3969/j.issn.1000-3835.2003.03.024Lou Jianwu, Long Yuan. Study on the technique of take and identify characteristics of blasting seismic wave[J]. Journal of Vibration and Shock Wave, 2003, 22 (3): 80-82. doi: 10.3969/j.issn.1000-3835.2003.03.024 [3] Lu Y, Hao H, Ma G, et al. Simulation of structural response under high-frequency ground excitations[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(2): 307-325. https://www.onacademic.com/detail/journal_1000033836073110_8f99.html [4] 李洪涛, 杨兴国, 卢文波, 等.基于等效峰值能量的建筑物爆破振动安全评价探讨[J].岩土工程学报, 2011, 33(5): 821-825. http://d.old.wanfangdata.com.cn/Conference/7813219Li Hongtao, Yang Xingguo, Lu Wenbo, et al. Safety assessment for structures under blasting vibration based onequivalent peak energy[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 821-825. http://d.old.wanfangdata.com.cn/Conference/7813219 [5] 郭学彬, 张继春, 刘泉, 等.微差爆破的波形叠加作用分析[J].爆破, 2006, 23(6): 4-8. http://d.old.wanfangdata.com.cn/Periodical/bp200602002Guo Xuebin, Zhang Jichun, Liu Quan, et al. Analysis of wave from superimposed action of millisecond blasting[J]. Blasting, 2006, 23(6): 4-8. http://d.old.wanfangdata.com.cn/Periodical/bp200602002 [6] 林大超, 施惠基, 白春华, 等.爆炸地震效应的时频分析[J].爆炸与冲击, 2003, 23(1): 31-36. doi: 10.3321/j.issn:1001-1455.2003.01.006Lin Dachao, Shi Huiji, Bai Chunhua, et al. Time-frequency analysis of explosion seismic effects[J]. Explosion and Shock Waves, 2003, 23(1): 31-36. doi: 10.3321/j.issn:1001-1455.2003.01.006 [7] 吴贤振, 尹丽冰, 刘建伟.基于LS-DYNA的临近采空区多段爆破微差时间优化研究[J].爆破, 2015, 32(1):87-92. doi: 10.3963/j.issn.1001-487X.2015.01.018