Application of SPH in stress wave simulation
-
摘要: 对一维波动方程的SPH(smoothed particle hydrodynamics)格式和有限差分格式进行比较,并采用SPH法模拟了一维应力/应变波, 获得1个可衡量SPH法模拟应力波准确性的重要指标。结果表明,SPH法模拟应力波传播中采用的光滑长度必须不小于粒子间距;采用B-样条核函数和高斯型核函数能够获得良好的应力波图像,而二次型核函数不能,因此二次型核函数不适用于冲击动力学的数值计算。Abstract: Obtaining accurate waveforms is significant in impact mechanics numerical calculation. This paper is to analyze how the kernel functions and smooth length affect the result of stress wave simulation. The SPH (smoothed particle hydrodynamics) formulations with different kernel functions and smooth lengths of one dimensional wave equation was compared with the finite difference formulation, which was derived in this paper. One dimensional stress and strain waves were simulated using the SPH method with different kernel functions and smooth lengths, and waveforms were gained accurately by B-spline and Gaussian kernels when the smooth length was equal to or greater than the particle interval. The wave velocity obtained by the quadratic kernel is below the theoretical value, no matter what the smooth length is. A parameter was deduced in this paper as roughly equal to the dimensionless wave velocity. Several conclusions were drawn. Firstly, the smooth length is equal to or greater than the particle interval, which is the necessary prerequisite for accurate stress wave simulation with SPH. Then, the quadratic kernel is not suitable in impact mechanics numerical calculation. Finally, the parameter deduced in this paper is a significant index to evaluate the stress wave simulation result of SPH.
-
Key words:
- mechanics of explosion /
- kernel function /
- smooth length /
- SPH method /
- stress wave
-
表 1 采用B-样条核函数在不同γ值下获得的一维应力波/应变波波速
Table 1. One dimensional stress/strain wave velocity obtained by B-spline kernel function using different γ
γ α c/c0 应力波 弹性应变波 塑性应变波 0.6 0.309 0.332 0.324 0.367 0.7 0.666 0.674 0.670 0.690 0.8 0.879 0.881 0.878 0.888 0.9 0.976 0.978 0.976 0.978 1.0 1.000 1.000 1.000 1.000 1.1 1.011 1.009 1.009 1.001 1.2 1.022 1.015 1.020 1.002 1.3 1.022 1.021 1.021 1.020 1.4 1.010 1.008 1.007 1.005 1.5 0.988 0.985 0.985 0.984 表 2 采用高斯型核函数在不同γ值下获得的一维应力波/应变波波速
Table 2. One dimensional stress/strain wave velocity obtained by Gaussian kernel function using different γ
γ α c/c0 应力波 弹性应变波 塑性应变波 0.4 0.068 0.075 0.080 0.081 0.5 0.330 0.339 0.337 0.341 0.6 0.650 0.656 0.654 0.653 0.7 0.862 0.867 0.866 0.870 0.8 0.958 0.962 0.961 0.960 0.9 0.990 1.000 1.000 1.000 1.0 0.996 1.001 1.001 1.001 1.1 1.000 1.001 1.001 1.001 1.2 1.000 1.001 1.001 1.001 表 3 采用二次型核函数在不同γ值下获得的一维应力波/应变波波速
Table 3. One dimensional stress/strain wave velocity obtained by quadratic kernel function using different γ
γ α c/c0 应力波 弹性应变波 塑性应变波 0.6 0.694 0.700 0.701 0.710 0.7 0.875 0.878 0.878 0.880 0.8 0.879 0.882 0.882 0.880 0.9 0.823 0.825 0.826 0.823 1.0 0.750 0.756 0.756 0.757 1.1 0.902 0.903 0.904 0.902 1.2 0.955 0.955 0.956 0.956 1.3 0.956 0.956 0.956 0.956 1.4 0.929 0.929 0.930 0.930 1.5 0.889 0.891 0.891 0.890 -
[1] Liu G R, Liu M B. Smoothed particle hydrodynamics: A meshfree particle method[M]. Singapore: World Scientific, 2003:309-341. [2] 王肖钧, 张刚明, 刘文韬, 等.弹塑性波计算中的光滑粒子法[J].爆炸与冲击, 2002, 22(2):97-103. doi: 10.3321/j.issn:1001-1455.2002.02.001Wang Xiaojun, Zhang Gangming, Liu Wentao, et al. Computations of elastic-plastic waves by smoothed particle hydrodynamics[J]. Explosion and Shock Waves, 2002, 22(2):97-103. doi: 10.3321/j.issn:1001-1455.2002.02.001 [3] 卞梁, 王肖钧, 肖卫国, 等.应力波和层裂计算中的光滑粒子法[J].中国科学技术大学学报, 2007, 37(7):706-710, 723. doi: 10.3969/j.issn.0253-2778.2007.07.003Bian Liang, Wang Xiaojun, Xiao Weiguo, et al. Numerical simulation of stress waves and spallation by smoothed particle hydrodynamics[J]. Journal of University of Science and Technology of China, 2007, 37(7):706-710, 723. doi: 10.3969/j.issn.0253-2778.2007.07.003 [4] 章杰, 苏少卿, 郑宇, 等.改进SPH方法在陶瓷材料层裂数值模拟中的应用[J].爆炸与冲击, 2013, 33(4):401-407. doi: 10.3969/j.issn.1001-1455.2013.04.011Zhang Jie, Su Shaoqing, Zheng Yu, et al. Application of modified SPH method to numerical simulation of ceramic spallation[J]. Explosion and Shock Waves, 2013, 33(4):401-407. doi: 10.3969/j.issn.1001-1455.2013.04.011 [5] Monaghan J J. Particle methods for hydrodynamics[J]. Computer Physics Reports, 1985, 3(2):71-124. doi: 10.1016/0167-7977(85)90010-3 [6] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(2):375-389. http://mnras.oxfordjournals.org/content/181/3/375.short [7] Johnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/2/3/4):347-373. doi: 10.1016-S0045-7825(96)01089-4/