PVC夹芯板在冲击载荷下的动态响应与失效模式

叶楠 张伟 黄威 李达诚 高玉波 谢文波

叶楠, 张伟, 黄威, 李达诚, 高玉波, 谢文波. PVC夹芯板在冲击载荷下的动态响应与失效模式[J]. 爆炸与冲击, 2017, 37(1): 37-45. doi: 10.11883/1001-1455(2017)01-0037-09
引用本文: 叶楠, 张伟, 黄威, 李达诚, 高玉波, 谢文波. PVC夹芯板在冲击载荷下的动态响应与失效模式[J]. 爆炸与冲击, 2017, 37(1): 37-45. doi: 10.11883/1001-1455(2017)01-0037-09
Ye Nan, Zhang Wei, Huang Wei, Li Dacheng, Gao Yubo, Xie Wenbo. Dynamic response and failure mode of PVC sandwich plates subjected to impact loading[J]. Explosion And Shock Waves, 2017, 37(1): 37-45. doi: 10.11883/1001-1455(2017)01-0037-09
Citation: Ye Nan, Zhang Wei, Huang Wei, Li Dacheng, Gao Yubo, Xie Wenbo. Dynamic response and failure mode of PVC sandwich plates subjected to impact loading[J]. Explosion And Shock Waves, 2017, 37(1): 37-45. doi: 10.11883/1001-1455(2017)01-0037-09

PVC夹芯板在冲击载荷下的动态响应与失效模式

doi: 10.11883/1001-1455(2017)01-0037-09
基金项目: 

国家自然科学基金项目 11372088

详细信息
    作者简介:

    叶楠(1986—),男,博士研究生

    通讯作者:

    张伟zhdawei@hit.edu.cn

  • 中图分类号: O347.3

Dynamic response and failure mode of PVC sandwich plates subjected to impact loading

  • 摘要: 通过开展对泡沫金属子弹撞击加载聚氯乙烯(polyvinyl chloride, PVC)夹芯板的实验,结合三维数字图像相关性(three dimensional digital image correlation, DIC-3D)技术,研究固支夹芯板在撞击加载条件下的动态响应,获得夹芯板受撞击及响应的变形过程,并结合图像分别分析夹芯板整体及三层结构的变形和失效模式;研究子弹冲量与背板最终变形之间的关系和相似冲量下等面密度不同芯层密度的夹芯结构的抗撞击性能。结果表明:夹芯板的破坏和失效主要集中在泡沫金属子弹直接作用区域,背板挠度由中间向固定端逐渐减小,子弹冲量与背板变形近似成线性关系。在等质量的条件下,降低芯层密度、增加芯层厚度可以有效降低背板的变形,实验结果对聚合物夹芯结构的工程优化设计具有一定的参考意义。
  • 图  1  实验装置

    Figure  1.  Schematics of experimental setup

    图  2  PVC夹芯板结构

    Figure  2.  Structure of PVC sandwich plate

    图  3  靶舱与支撑结构

    Figure  3.  Impact chamber and support

    图  4  PVC材料的名义应力应变曲线

    Figure  4.  Nominal stress-strain curves for PVC

    图  5  泡沫铝弹的冲击时程曲线

    Figure  5.  The measured pressure histories of foam projectile

    图  6  拍摄和计算区域的参考点

    Figure  6.  Shooting area and gauge point in calculation area

    图  7  夹芯板的动态响应及挠度变化

    Figure  7.  Dynamic response and deflection change of sandwich plate

    图  8  参考点处的挠度时程曲线

    Figure  8.  Histories of deflection at gauge points

    图  9  拉伸撕裂模式的动态响应

    Figure  9.  Dynamic response of tensile-tearing mode

    图  10  剪切失效模式的动态响应

    Figure  10.  Dynamic response of shear rupture mode

    图  11  铝板的失效模式

    Figure  11.  Failure mode of aluminum sheet

    图  12  芯层的失效模式

    Figure  12.  Failure mode of the core

    图  13  泡沫弹冲量与夹芯板挠度的关系

    Figure  13.  Relation between deflection and impulse for sandwich plates impacted by foam projectiles

    图  14  3种不同种结构的中点处挠度时程曲线

    Figure  14.  Histories of deflection for three different configurations at middle points

    表  1  冲击加载夹芯板的实验结果

    Table  1.   Experimental results of sandwich plates under blast loading

    No. v0/(m·s-1) I/(g·m·s-1) w/mm
    C1-1 92.27 1282.50 9.3
    C1-2 98.49 1398.62 11.4
    C1-3 137.36 1950.58 16.2
    C1-4 189.58 2729.97 21.1
    C1-5 260.69 3649.69 33.9
    C1-6 274.90 4096.00
    C1-7 290.23 4295.41
    C2-1 201.92 2927.77 18.1
    C3-1 193.78 2848.63 12.7
    下载: 导出CSV
  • [1] Schwingel D, Seeliger H W, Vecchionacci C, et al. Aluminium foam sandwich structures for space application[J]. Acta Astronautica, 2007, 61(1/2/3/4/5/6):326-330. http://www.sciencedirect.com/science/article/pii/S0094576507000513
    [2] Nurick G. N, Shave G C. The deformation and tearing of thin square plates subjected to impulsive loads: An experimental study[J]. International Journal of Impact Engineering, 1996, 18(1):99-116. doi: 10.1016/0734-743X(95)00018-2
    [3] Nurick G. N, Gelman M E, Marshall N S. Tearing of blast loaded plates with clamped boundary conditions[J]. International Journal of Impact Engineering, 1996, 18(7/8):803-827. http://www.sciencedirect.com/science/article/pii/S0734743X96000267
    [4] Rudrapatna N S, Vaziri R, Olson M D. Deformation and failure of blast-loaded square plates[J]. International Journal of Impact Engineering, 1999, 22(4):449-467. doi: 10.1016/S0734-743X(98)00046-3
    [5] Hutchinson J W, Xue Z. Metal sandwich plates optimized for pressure impulses[J]. International Journal of Mechanical Sciences, 2005, 47(4/5):545-569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b00cf78c39b1b1398d76c22f7f142b61
    [6] Fleck N A, Deshpande V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics, 2004, 71(3):386-401. doi: 10.1115/1.1629109
    [7] Qiu X, Deshpande V S, Fleck N A. Dynamic response of a clamped circular sandwich plate subject to shock loading[J]. Journal of Applied Mechanics, 2004, 71(5):637-645. doi: 10.1115/1.1778416
    [8] Zhu Feng, Wang Zhihua, Lu Guoxing, et al. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading[J]. International Journal of Impact Engineering, 2010, 37(6):625-637. doi: 10.1016/j.ijimpeng.2009.11.003
    [9] Deshpande V S, Fleck N A. One-dimensional response of sandwich plates to underwater shock loading[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(11):2347-2383. doi: 10.1016/j.jmps.2005.06.006
    [10] Zhu Feng, Wang Zhihua, Lu Guoxing. Analytical investigation and optimal design of sandwich panels subjected to shock loading[J]. Materials and Design, 2009, 30(1):91-100. doi: 10.1016/j.matdes.2008.04.027
    [11] Damith M, Tuan N, Sudharshan N R, et al. Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact[J]. Materials and Design, 2014, 56(4):696-713. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8078b111dcbe716875b32052ebde535
    [12] Avachat S, Zhou M. High-speed digital imaging and computational modeling of dynamic failure in composite structures subjected to underwater impulsive loads[J]. International Journal of Impact Engineering, 2015, 77(3):147-165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=130d90ff57d1bc5b998e08e3bf2933be
    [13] Radford D D, Deshpande V S, Fleck N A. The use of metal foam projectiles to simulate shock loading on a structure[J]. International Journal of Impact Engineering, 2005, 31(9):1152-1171. doi: 10.1016/j.ijimpeng.2004.07.012
    [14] Radford D D, McShane G J, Deshpande V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading[J]. International Journal of Solids and Structures, 2006, 43(7/8):2243-2259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0f89ee6c67dd0ac5818c98b646631e8
    [15] 卢子兴, 王建华, 谢若泽, 等.增强聚氨酯泡沫塑料力学行为的研究[J].复合材料学报, 1999, 16(2):39-45. doi: 10.3321/j.issn:1000-3851.1999.02.008

    Lu Zixing, Wang Jianhua, Xie Ruoze, et al. Investigations into mechanical behavior of two reinforced foam plastics[J]. Acta Materiae Compositae Sinica, 1999, 16(2):39-45. doi: 10.3321/j.issn:1000-3851.1999.02.008
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  4624
  • HTML全文浏览量:  1613
  • PDF下载量:  522
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-10
  • 修回日期:  2016-02-27
  • 刊出日期:  2017-01-25

目录

    /

    返回文章
    返回