不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟

李文凤 余永刚 叶锐 杨后文

李文凤, 余永刚, 叶锐, 杨后文. 不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟[J]. 爆炸与冲击, 2017, 37(1): 46-52. doi: 10.11883/1001-1455(2017)01-0046-07
引用本文: 李文凤, 余永刚, 叶锐, 杨后文. 不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟[J]. 爆炸与冲击, 2017, 37(1): 46-52. doi: 10.11883/1001-1455(2017)01-0046-07
Li Wenfeng, Yu Yonggang, Ye Rui, Yang Houwen. Simulation of cook-off for AP/HTPB composition propellant in base bleed unit at different heating rates[J]. Explosion And Shock Waves, 2017, 37(1): 46-52. doi: 10.11883/1001-1455(2017)01-0046-07
Citation: Li Wenfeng, Yu Yonggang, Ye Rui, Yang Houwen. Simulation of cook-off for AP/HTPB composition propellant in base bleed unit at different heating rates[J]. Explosion And Shock Waves, 2017, 37(1): 46-52. doi: 10.11883/1001-1455(2017)01-0046-07

不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟

doi: 10.11883/1001-1455(2017)01-0046-07
基金项目: 

国家自然科学基金项目 51176076

详细信息
    作者简介:

    李文凤(1990—),男,博士研究生

    通讯作者:

    余永刚,yyg801@njust.edu.cn

  • 中图分类号: O389

Simulation of cook-off for AP/HTPB composition propellant in base bleed unit at different heating rates

  • 摘要: 为研究在不同升温速率下高氯酸铵(ammonium perchlorate, AP)/端羟基聚丁二烯(tydroxyl-terminated polybutadiene, HTPB)底排装置的慢速烤燃特性,建立AP/HTPB底排推进剂二维轴对称非稳态传热模型和两步化学动力学反应模型。在不同升温速率下,分析底排装置的慢速烤燃响应特性。计算结果表明:在慢速烤燃的条件下,烤燃响应点发生在底排药柱与空气腔的接触面左侧,升温速率对底排药柱的着火延迟时间和烤燃响应点位置有较大影响。随着升温速率的提高,着火延迟时间变短,烤燃响应点向中心侧移动。升温速率对烤燃响应点的着火温度影响较小。
  • 图  1  底排装置示意图

    Figure  1.  Schematics of base bleed unit

    图  2  网格尺寸图

    Figure  2.  Grid size chart

    图  3  中心点温度时程曲线计算与实验对比

    Figure  3.  Comparison of the temperature histories at center point in calculation and experiment

    图  4  不同时刻下装置的温度分布云图

    Figure  4.  Contour of temperature distribution on the unit at different times

    图  5  3种升温速率下装置在不同时刻的温度分布云图

    Figure  5.  Contour of temperature distribution on the unit at different times at different heating rates

    图  6  各特征点在不同升温速率下的温升曲线

    Figure  6.  Histories of temperature at the feature points at different heating rates

    图  7  不同升温速率下烤燃响应点的温升曲线

    Figure  7.  Histories of temperature at the cook-off response point at different heating rates

    表  1  AP/HTPB推进剂的动力学参数[10]

    Table  1.   Parameters of AP/HTPB propellant[10]

    反应步骤 Di Ei/(kJ·mol-1) qi/(kJ·kg-1)
    1 800 137.18 -297.0
    2 1 100 178.75 9 643.2
    下载: 导出CSV

    表  2  物性参数[3, 11]

    Table  2.   Parameters of materials[3, 11]

    材料 ρ/(kg·m-3) λ/(W·m-1·K-1) cp/(J·kg-1·K-1)
    壳体 8 030 16.270    502.48
    底排药 1 826   0.389 1 255.20
    包覆层    950   0.276 2 860.00
    下载: 导出CSV
  • [1] 张为华, 陈广南.固体火箭发动机撞击与热安全性分析[M].北京:国防工业出版社, 2008:8-15.
    [2] 马欣, 陈朗, 鲁峰, 等.烤燃条件下HMX/TATB基混合炸药多步热分解反应计算[J].爆炸与冲击, 2014, 34(1):67-74. doi: 10.3969/j.issn.1001-1455.2014.01.012

    Ma Xin, Chen Lang, Lu Feng, et al.Calculation on multi-step thermal decomposition of HMX and TATB-based composite explosive under cook-off conditions[J].Explosion and Shock Waves, 2014, 34(1):67-74. doi: 10.3969/j.issn.1001-1455.2014.01.012
    [3] 向梅, 黄毅民, 饶国宁, 等.不同升温速率下复合药柱烤燃实验与数值模拟研究[J].爆炸与冲击, 2013, 33(4):394-400. doi: 10.3969/j.issn.1001-1455.2013.04.010

    Xiang Mei, Huang Yimin, Rao Guoning, et al.Cook-off test and numerical simulation for composite charge at different heating rates[J].Explosion and Shock Waves, 2013, 33(4):394-400. doi: 10.3969/j.issn.1001-1455.2013.04.010
    [4] Ho S Y.Thermomechanical properties of rocket propellants and correlation with cook-off behaviour[J].Propellants, Explosives, Pyrotechnics, 1995, 20(4):206-214. doi: 10.1002/(ISSN)1521-4087
    [5] Gillard P, Longuet B.Investigation of heat transfer and heterogeneous reactions during the slow cook off of a composite propellant[J].Journal of Loss Prevention in the Process Industries, 2013, 26(6):1506-1514. doi: 10.1016/j.jlp.2013.09.005
    [6] Caro R I, Bellerby J M.Behavior of hydroxyl-terminated polyether (HTPE) composite rocket propellants in slow cook-off[J].International Journal of Energetic Materials and Chemical Propulsion, 2008, 7(3):171-185. doi: 10.1615/IntJEnergeticMaterialsChemProp.v7.i3
    [7] 陈中娥, 唐承志, 赵孝彬.固体推进剂的慢速烤燃行为与热分解特性的关系研究[J].含能材料, 2005, 13(6):393-396. doi: 10.3969/j.issn.1006-9941.2005.06.013

    Chen Zhonge, Tang Chengzhi, Zhao Xiaobin.Relationship between slow cook-off behavior and thermal decomposition characteristics of solid propellant[J].Chinese Journal of Energetic Materials, 2005, 13(6):393-396. doi: 10.3969/j.issn.1006-9941.2005.06.013
    [8] 赵孝彬, 李军, 程立国, 等.固体推进剂慢速烤燃特性的影响因素研究[J].含能材料, 2011, 19(6):669-672. doi: 10.3969/j.issn.1006-9941.2011.06.016

    Zhao Xiaobin, Li Jun, Cheng Liguo, et al.Influence factors of slow cook-off characteristic for solid propellant[J].Chinese Journal of Energetic Materials, 2011, 19(6):669-672. doi: 10.3969/j.issn.1006-9941.2011.06.016
    [9] 郭锡福.底部排气弹外弹道学[M].北京:国防工业出版社, 1995:125-126.
    [10] Kim K, Kim C, Yoo J, et al.Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants[J].Journal of Propulsion and Power, 2011, 27(4):822-827. doi: 10.2514/1.B34099
    [11] Gwak M, Jung T, Yoh J J.Friction-induced ignition modeling of energetic materials[J].Journal of Mechanical Science and Technology, 2009, 23(7):1779-1787. doi: 10.1007/s12206-009-0603-1
    [12] 沈慧, 余永刚.AP/HTPB底排推进剂的TG测量结果与分析[J].科学技术与工程, 2013(25):7501-7504. doi: 10.3969/j.issn.1671-1815.2013.25.042

    Shen Hui, Yu Yonggang.Study on analysis of TG measurements results of AP/HTPB base bleed propellant[J].Science Technology and Engineering, 2013(25):7501-7504. doi: 10.3969/j.issn.1671-1815.2013.25.042
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  5508
  • HTML全文浏览量:  1974
  • PDF下载量:  757
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2015-09-17
  • 刊出日期:  2017-01-25

目录

    /

    返回文章
    返回