多介质流体力学计算的谱体积方法

刘娜 陈艺冰

刘娜, 陈艺冰. 多介质流体力学计算的谱体积方法[J]. 爆炸与冲击, 2017, 37(1): 114-119. doi: 10.11883/1001-1455(2017)01-0114-06
引用本文: 刘娜, 陈艺冰. 多介质流体力学计算的谱体积方法[J]. 爆炸与冲击, 2017, 37(1): 114-119. doi: 10.11883/1001-1455(2017)01-0114-06
Liu Na, Chen Yibing. High order spectral volume method for multi-component flows[J]. Explosion And Shock Waves, 2017, 37(1): 114-119. doi: 10.11883/1001-1455(2017)01-0114-06
Citation: Liu Na, Chen Yibing. High order spectral volume method for multi-component flows[J]. Explosion And Shock Waves, 2017, 37(1): 114-119. doi: 10.11883/1001-1455(2017)01-0114-06

多介质流体力学计算的谱体积方法

doi: 10.11883/1001-1455(2017)01-0114-06
基金项目: 

国家自然科学基金项目 11101047

国家自然科学基金项目 11501043

国家自然科学基金项目 11671050

国家自然科学基金项目 91430218

国家自然科学基金项目 U1630247

中国工程物理研究院科学技术发展基金项目 2013A0202011

详细信息
    作者简介:

    刘娜(1986—),女,博士,助理研究员,liu_na@iapcm.ac.cn

  • 中图分类号: O357.4

High order spectral volume method for multi-component flows

  • 摘要: 针对高维及多物理耦合计算耗费大等困难,设计适合多介质流动模拟的模板紧致、易于并行、高阶精度、计算耗费小的谱体积方法。该方法是求解双曲型守恒率谱体积方法的直接推广,针对多介质流动物质界面捕捉的困难,利用拟守恒格式的思想避免物质界面处的非物理振荡。数值模拟结果表明,本方法具有高阶精度、高分辨率,且节约计算量,并且可以有效避免物质界面处非物理振荡。
  • 图  1  守恒谱体积格式的一维多介质运动界面问题

    Figure  1.  One-dimensional moving interface problem for conservative spectral volume scheme

    图  2  拟守恒谱体积格式的一维多介质运动界面问题

    Figure  2.  One-dimensional moving interface problem for quasi-conservative spectral volume scheme

    图  3  拟守恒谱体积格式的高压力比气液激波管问题

    Figure  3.  High pressure ratio gas-liquid shock tube problem for quasi-conservative spectral volume scheme

    图  4  拟守恒谱体积格式的高压力比气液激波管问题

    Figure  4.  High pressure ratio gas-liquid shock tube problem for quasi-conservative spectral volume scheme

    图  5  拟守恒谱体积格式的三点问题密度等值线图

    Figure  5.  Density contours of triple point problem for quasi-conservative spectral volume scheme

    表  1  格式的数值精度

    Table  1.   Numerical accuracy of present schemes

    N Lerr1 order Lerr1 order Lerr1 order Lerr1 order
    k=2 k=3 k=4 k=4
    10 4.80×10-3 - 3.91×10-4 - 7.22×10-6 - 4.69×10-7 -
    20 1.17×10-4 2.04 6.77×10-5 2.53 4.34×10-7 4.06 1.93×10-8 4.60
    40 2.93×10-5 2.00 9.64×10-6 2.81 2.47×10-8 4.14 6.79×10-10 4.83
    80 7.34×10-5 2.00 1.26×10-6 2.94 1.56×10-9 3.98 2.21×10-11 4.94
    160 1.84×10-5 2.00 1.59×10-7 2.99 9.77×10-11 4.00 6.85×10-13 5.01
    下载: 导出CSV
  • [1] Abgrall R. How to prevent pressure oscillations in multicomponent flow calculation: A quasi conservative approach[J]. Journal of Computational Physics, 1996, 125(1):150-160. doi: 10.1006/jcph.1996.0085
    [2] Abgrall R, Karni S. Computations of compressible multifluids[J]. Journal of Computational Physics, 2001, 169(2):594-623. doi: 10.1006/jcph.2000.6685
    [3] Shyue K M. An effcient shock-capturing algorithm for compressible multicomponent problems[J]. Journal of Computational Physics, 1998, 142(1):208-242. http://cn.bing.com/academic/profile?id=0353bed7b41acec082faa9e0749fd595&encoded=0&v=paper_preview&mkt=zh-cn
    [4] Shyue K M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Gruneisen equation of state[J]. Journal of Computational Physics, 2001, 171(2):678-707. doi: 10.1006/jcph.2001.6801
    [5] Chen Y B, Jiang S. A non-oscillatory kinetic scheme for multicomponent flows with the equation of state for a stiffned gas[J]. Journal of Computational Mathematics, 2011, 29(6):661-683. doi: 10.4208/jcm
    [6] Johnsen E, Colonius T. Implementation of WENO schemes in compressible multicomponent flow problems[J]. Journal of Computational Physics, 2006, 219(2):715-732. http://www.sciencedirect.com/science/article/pii/S0021999106002014
    [7] Zhu J, Qiu J X, Liu T G, et al. RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations[J]. Applied Numerical Mathematics, 2011, 61(4):554-580. doi: 10.1016/j.apnum.2010.12.002
    [8] Wang Z J. Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation[J]. Journal of Computational Physics, 2002, 178(1):210-251. doi: 10.1006/jcph.2002.7041
    [9] Wang Z J, Liu Y. Spectral (finite) volume method for conservation laws on unstructured grids Ⅲ: One dimensional systems and partition optimization[J]. Journal of Scientific Computing, 2004, 20(1):137-157. http://www.sciencedirect.com/science/article/pii/S0021999103005035
    [10] Karni S. Multicomponent flow calculations by a consistent primitive algorithm[J]. Journal of Computational Physics, 1994, 112(1):31-43. http://dl.acm.org/citation.cfm?id=182760
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4772
  • HTML全文浏览量:  1714
  • PDF下载量:  495
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-09-20
  • 刊出日期:  2017-01-25

目录

    /

    返回文章
    返回