Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum
-
摘要: 为了研究CL-20基含铝炸药的爆炸反应机理,利用水中爆炸实验,测量了不同铝粉含量和粒度的CL-20炸药水中爆炸的冲击波参数、二次压力波参数,计算了冲击波能和气泡能。结果表明,水中爆炸的冲击波能和气泡能表征了爆轰和二次反应两个阶段的炸药爆炸能量分配,CL-20炸药中的铝粉主要在二次反应阶段发生反应,只有少部分的铝粉参与了早期的爆轰反应。气泡脉动形成的二次压力波能描述铝粉含量和粒度对二次反应过程的影响,铝粉含量对炸药的二次反应有显著的影响;铝粉粒度对炸药的水下爆炸的初始冲击波参数、冲击波能和气泡能的影响很小,对铝粉与爆轰产物的二次反应速率影响较大。Abstract: In the present work, the parameters of shock wave and secondary pressure wave with different aluminum powder content and particle size of CL-20-based aluminized explosives were measured by underwater explosion testing, the shock wave energy and bubble energy were calculated, and the explosion reaction mechanism of CL-20-based aluminized explosives was analyzed. The results show that the shock wave energy and the bubble energy of the underwater explosion represent the energy distribution in the early detonation period and the secondary reaction period, with only a minor portion of the aluminum powder participating in the early detonation period. The secondary pressure wave formed by the bubble pulsation can describe the effect of the aluminum and detonation products on the secondary reaction. The amount of the aluminum content has a significant influence on the process of the secondary reaction and, while the aluminum particle size has little effect on the initial shock wave parameters, shock wave energy and bubble energy, its effect is great on the secondary reaction rate of the aluminum power and detonation products.
-
表 1 炸药组分
Table 1. Explosives formulation
样品 ρ/(g·cm-3) m/g ω(CL-20)/% ω(Al)/% ω(LiF)/% ω(黏结剂)/% 1 1.94 12.04 80.0 15.0 0 5 2 1.94 12.05 80.0 0 15 5 3 1.94 18.20 95.0 0 0 5 4 2.00 19.20 81.5 13.5 0 5 5 2.06 19.80 70.0 25.0 0 5 6 2.11 20.50 60.0 35.0 0 5 7 2.00 19.20 81.5 13.5 0 5 表 2 CL-20基炸药的水下爆炸冲击波与气泡参数和能量
Table 2. Shock wave and bubble parameter and energy of underwater explosion for CL-20-based explosives
样品 ps, max/MPa Is/(Pa·s) es/(MJ·kg-1) eb/(MJ·kg-1) 1 24.25 916.4 1.229 3.319 2 23.11 797.5 1.039 1.919 表 3 CL-20基炸药的水中爆炸参数
Table 3. Parameters of underwater explosion for CL-20-based explosives
样品 ΔTb/ms ps, max/MPa pb, max/MPa pb, max/ps, max Is/(kPa·s) Ib/(kPa·s) Ib/Is 3 2.98 29.25 2.60 0.089 1.10 2.36 2.15 4 4.39 28.00 2.44 0.087 1.12 3.23 2.88 5 5.25 27.36 2.03 0.074 1.71 3.79 2.22 6 7.52 25.70 1.78 0.069 1.64 4.21 2.57 表 4 含两种粒度铝粉的CL-20基炸药的水下爆炸参数
Table 4. Parameters of underwater explosion for CL-20-based explosives containing powders with two particle sizes
样品 ps, max/MPa Is/(kPa·s) es/(MJ·kg-1) tb/ms eb/(MJ·kg-1) pb, max/MPa ΔTb/ms Ib/(kPa·s) 4 28.00 1.116 1.503 69.98 2.927 2.44 4.39 3.227 7 27.62 1.136 1.543 69.84 2.907 2.79 3.51 3.088 -
[1] Nicolich S M.Performance and hazard characterization of CL-20 formulations[C]//The 29th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 1998: 1-10. [2] Donald A, Geiss J. Additional characterization of high performance CL-20 formulation[C]//Proceedings of 30th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 1999: 167-180. [3] Kneisl P. PBXW-16, an insensitive pressed explosive[C]//Proceedings of 30th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 1999: 264-267. [4] Hoffman D M. Fatigue of LX-14 and LX-19 plastic bonded explosives[J]. Journal of Energetic Materials, 2000, 18(1):1-27. doi: 10.1080/07370650008216110 [5] Balas W, Nicolish S, Capellos C. CL-20 PAX explosives formulation developmentt, characterization, and testing[C]//NDIA 2003 IM/EM Technology Symposium. Miami, 2003: 181-185. [6] Lee K E, Hatch R L, Braithwaite P. Method for making high performance explosive formulations containing CL-20: US, US 6217799 B1[P]. 2001-04-17. http://www.wanfangdata.com.cn/details/detail.do?_type=patent&id=US19980166843 [7] Cook M A, Filler A S, Keyes R T, et al. Aluminized explosives[J]. Journal of Physical Chemistry, 1957, 61(2):189-196. doi: 10.1021/j150548a013 [8] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[J]. Materials Research Society, 1996, 21(2):413-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=OPL418OPLOPL418S1946427400194527h.xml [9] Pastine D J, Cowperthwaite M, Solomon J M, et al. A model of non-ideal detonation in aluminized explosives[C]//The 11th International Detonation Symposium. Colorado: Department of Energy, 1998: 204-213. [10] 薛再清, 徐更光, 王延增.用KHT状态方程计算炸药爆轰参数[J].爆炸与冲击, 1998, 18(2):172-176. http://www.bzycj.cn/CN/abstract/abstract10399.shtmlXue Zaiqing, Xu Gengguang, Wang Yanzeng. Using KHT equation of state to calculated detonation parameters of explosives[J]. Explosion and Shock Waves, 1998, 18(2):172-176. http://www.bzycj.cn/CN/abstract/abstract10399.shtml [11] 陈朗, 张寿齐, 赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击, 1999, 19(3):250-255. http://www.bzycj.cn/CN/Y1999/V19/I3/250Chen Lang, Zhang Shouqi, Zhao Yuhua. Study of the metal acceleration capacaities of aluminized explosives with spherical aluminum particles of fidderent diameter[J]. Explosion and Shock Waves, 1999, 19(3):250-255. http://www.bzycj.cn/CN/Y1999/V19/I3/250 [12] 王建灵, 赵东奎, 郭炜, 等.水下爆炸能量测试中炸药入水深度的确定[J].火炸药学报, 2002, 25(2):30-31;44. doi: 10.3969/j.issn.1007-7812.2002.02.012Wang Jianling, Zhao Dongkui, Guo Wei, et al. Determination of reasonable depth of explosives in water to measure underwater explosion energy[J]. Chinese Journal of Explosives & Propellants, 2002, 25(2):30-31;44. doi: 10.3969/j.issn.1007-7812.2002.02.012 [13] Bjarnholt G. Suggestions on standards for measurement and data evaluation in the underwater explosion test[J]. Propellants Explosives, Pyrotechnics, 1980, 5(2/3):67-74. doi: 10.1002-prep.19800050213/ [14] Murata K, Takahashi K, Kato Y. Precise measurements of underwater explosion phenomena by pressure sensor using fluoropolymer[J]. Journal of Materials Processing Technology, 1999, 85:39-42. doi: 10.1016/S0924-0136(98)00251-9 [15] Murata K, Takahashi K, Kato Y. Measurements of underwater explosion performances by pressure gauge using fluoropolymer[C]//The 12th International Detonation Symposium. San Diego: Department of Energy, 2002: 336-343. [16] 奥尔连科Л П.爆炸物理学[M].3版.孙承纬, 译.北京: 科学出版社, 2011: 347-364. [17] Arnold W, Rottenkolber E. Thermobaric charges: Modelling and testing[C]//The 38th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 2007: 26-29. -