Experimental study of methane explosion suppression by nitrogen twin-fluid water mist
-
摘要: 为了在较低压力下获得较小粒径的细水雾,降低喷雾抑爆系统的运行成本,提高系统的适用性和抑爆效率,自行搭建了尺寸为120 mm×120 mm×840 mm的透明有机玻璃瓦斯爆炸管道实验平台。采用双流体喷嘴将N2和细水雾送入试验管道,通过调节喷雾压力和喷雾时间开展了双流体细水雾抑制瓦斯爆炸实验研究,从火焰速度、瓦斯爆炸超压2个方面探讨双流体细水雾的抑爆有效性。实验结果表明:N2双流体细水雾抑爆效果明显,可以减小瓦斯爆炸强度;随着喷雾时间的延长,爆炸火焰的速度峰值逐渐下降,爆炸超压峰值逐渐下降,平均升压速率逐渐降低;当N2压力为0.4 MPa、喷雾时间为3 s时,速度峰值比不喷雾时下降60.39%,爆炸超压峰值下降37.76%。Abstract: In this work, to obtain a water mist with a finer particle size under lower pressures, reduce the running costs of the explosion-suppressing spray system, and improve its efficiency and applicability, we designed a transparent organic glass pipeline (120 mm×120 mm×840 mm) as the experimental platform for gas explosion. Then N2 and fine water mist was pressed into the pipeline using a twin-fluid nozzle and experimental study of methane explosion suppression by nitrogen twin-fluid water mist was carried out adjusting the spray pressure and spray time and the explosion-suppression effectiveness of the twin-fluid water mist was investigated via analysis of the flame speed and the gas explosion overpressure. The results show that this twin-fluid water mist has a high explosion-suppressing efficiency, capable of reducing the damage degree of gas explosion. With the extension of the spray time, the peak value of the explosion flame speed, the peak overpressure and the average pressure rise rate decreased gradually. When the pressure of N2 was 0.4 MPa and the spray time was 3 s, the peak value of the velocity decreased by 60.39%, and the peak overpressure decreased by 37.76%.
-
Key words:
- twin-fluid /
- nitrogen /
- fine water mist /
- gas explosion
-
表 1 不同压力不同喷雾时间下速度峰值的下降比例
Table 1. Decline proportion of the peak velocity under different pressure and at different times
工况 速度峰值/ (m·s-1) 下降比例/ % N2-0.2 MPa-1 s 14.10 17.01 N2-0.2 MPa-2 s 13.18 22.43 N2-0.2 MPa-3 s 11.73 30.96 N2-0.3 MPa-1 s 14.04 17.36 N2-0.3 MPa-2 s 12.25 27.90 N2-0.3 MPa-3 s 7.27 57.20 N2-0.4 MPa-1 s 13.96 17.83 N2-0.4 MPa-2 s 11.78 30.66 N2-0.4 MPa-3 s 6.73 60.39 表 2 不同压力不同喷雾时间下超压峰值的下降比例
Table 2. Decline proportion of the peak overpressure under different pressure and at different times
工况 超压峰值/ (104 Pa) 下降比例/ % N2-0.2 MPa-1 s 2.978 2 6.68 N2-0.2 MPa-2 s 2.792 2 12.51 N2-0.2 MPa-3 s 2.179 3 31.72 N2-0.3 MPa-1 s 2.917 2 8.59 N2-0.3 MPa-2 s 2.776 8 12.99 N2-0.3 MPa-3 s 1.996 3 37.45 N2-0.4 MPa-1 s 2.814 5 11.81 N2-0.4 MPa-2 s 2.202 9 30.98 N2-0.4 MPa-3 s 1.986 4 37.76 表 3 不同压力不同喷雾时间下平均升压速率
Table 3. Average pressure rise rate under different pressure and at different times
工况 平均升压速率/(kPa·s-1) N2-0.2 MPa-1 s 495 N2-0.2 MPa-2s 400 N2-0.2 MPa-3s 235 N2-0.3 MPa-1 s 402 N2-0.3 MPa-2 s 327 N2-0.3 MPa-3 s 218 N2-0.4 MPa-1 s 335 N2-0.4 MPa-2 s 248 N2-0.4 MPa-3 s 181 -
[1] 陆守香, 何杰, 于春红, 等.水抑制瓦斯爆炸的机理研究[J].煤炭学报, 1998, 23(4):417-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800867661Lu Shouxiang, He Jie, Yu Chunhong, et al. Study on mechanism of gas explosion suppression by water[J]. Journal of Coal Science, 1998, 23(4):417-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800867661 [2] 余明高, 安安, 游浩.细水雾抑制管道瓦斯爆炸的实验研究[J].煤炭学报, 2011, 36(3):417-422. http://d.old.wanfangdata.com.cn/Periodical/bzycj201702004Yu Minggao, An An, You Hao. Experimental study on inhibiting the gas explosion by water spray in tube[J]. Journal of Coal Science, 2011, 36(3):417-422. http://d.old.wanfangdata.com.cn/Periodical/bzycj201702004 [3] 毕明树, 李铮, 张鹏鹏.细水雾抑制瓦斯爆炸的实验研究[J].采矿与安全工程学报, 2012, 29(3):440-443. http://d.old.wanfangdata.com.cn/Periodical/bzycj201702004Bi Mingshu, Li Zheng, Zhang Pengpeng. Experimental investigation on suppression of gas explosion with water mist[J]. Journal of Mining & Safety Engineering, 2012, 29(3):440-443. http://d.old.wanfangdata.com.cn/Periodical/bzycj201702004 [4] 谢波, 范宝春, 夏自柱, 等.大型通道中主动式水雾抑爆现象的实验研究[J].爆炸与冲击, 2003, 23(2):151-156. http://www.bzycj.cn/CN/abstract/abstract10038.shtmlXie Bo, Fan Baochun, Xia Zizhu, et al. Experimental study on explosion suppression of active water mist in large channel[J]. Explosion and Shock Waves, 23(2):151-156. http://www.bzycj.cn/CN/abstract/abstract10038.shtml [5] 唐建军.细水雾抑制瓦斯爆炸实验与数值模拟研究[D].西安: 西安科技大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10704-2009262977.htm [6] Wingerden K V. Mitigation of gas explosions using water deluge[J]. Process Safety Progress, 2000, 19(3):173-178. doi: 10.1002/(ISSN)1547-5913 [7] 张鹏鹏.超细水雾增强与抑制瓦斯爆炸的实验研究[D].大连: 大连理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013201707.htm [8] Medvedev S P, Gel'fand B E, Polenov A N, et al. Flammability limits for hydrogen-air mixtures in the presence of ultrafine droplets of water (fog)[J]. Combustion, Explosion, and Shock Waves, 2002, 38(4):381-386. doi: 10.1023/A:1016277028276 [9] 余明高, 赵万里, 安安.超细水雾作用下瓦斯火焰抑制特性研究[J].采矿与安全工程学报, 2011, 28(3):493-498. doi: 10.3969/j.issn.1673-3363.2011.03.030Yu Minggao, Zhao Wanli, An An. Study on the inhibiting effectiveness on gas flame under the effort of ultra-fine water mist[J]. Journal of Mining & Safety Engineering, 2011, 28(3):493-498. doi: 10.3969/j.issn.1673-3363.2011.03.030 [10] 牛慧昌.含添加剂细水雾灭火性能实验研究[D].沈阳: 沈阳航天航空大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10143-1012316450.htm [11] 陆强, 黄鑫, 何宁.双流体细水雾抑制熄灭油池火的实验研究[J].消防科学与技术, 2009, 28(1):1-4. doi: 10.3969/j.issn.1009-0029.2009.01.002Lu Qiang, Huang Xin, He Ning. Experimental study on the suppression of pool fire with twin fluid water mist[J]. Fire Science and Technology, 2009, 28(1):1-4. doi: 10.3969/j.issn.1009-0029.2009.01.002 [12] 钱海林, 王志荣, 蒋军成.N2/CO2混合气体对甲烷爆炸的影响[J].爆炸与冲击, 2012, 32(4):445-448. doi: 10.3969/j.issn.1001-1455.2012.04.016Qian Hailin, Wang Zhirong, Jiang Juncheng. Effect of N2/CO2 mixed gas on methane explosion[J]. Explosion and Shock Waves, 2012, 32(4):445-448. doi: 10.3969/j.issn.1001-1455.2012.04.016 [13] Pei B, Yu M, Chen L, et al. Experimental study on the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct[J]. Journal of Loss Prevention in the Process Industries, 2016, 40:546-553. doi: 10.1016/j.jlp.2016.02.005 [14] 陈东梁, 孙金华, 刘义, 等.甲烷/空气预混气体火焰的传播特征[J].爆炸与冲击, 2008, 28(5):387-390. http://www.bzycj.cn/CN/abstract/abstract9060.shtmlChen Dongliang, Sun Jinhua, Liu Yi, et al. Propagation characteristics of methane/air premixed gas flame[J]. Explosion and shock waves, 2008, 28(5):387-390. http://www.bzycj.cn/CN/abstract/abstract9060.shtml [15] 余明高, 郑凯, 郑立刚, 等.基于Matlab图像处理的瓦斯爆炸火焰传播速度研究[J].安全与环境学报, 2014, 14(1):6-9. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201401002Yu Minggao, Zheng Kai, Zheng Ligang, et al. Study on flame propagation velocity of gas explosion based on Matlab image processing[J]. Journal of Safety and Environment, 2014, 14(1):6-9. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201401002 [16] 黄子超, 司荣军, 张延松, 等.初始温度对瓦斯爆炸特性影响的数值模拟[J].煤矿安全, 2012, 43(5):5-11. http://d.old.wanfangdata.com.cn/Periodical/mkaq201205002Huang Zichao, Si Rongjun, Zhang Yansong, et al. Numerical simulation of the influence of initial temperature on gas explosion characteristics[J]. Coal Mine Safety, 2012, 43(5):5-11. http://d.old.wanfangdata.com.cn/Periodical/mkaq201205002 [17] 李润之.不同总量沉积煤尘在瓦斯爆炸诱导下的传播规律模拟研究[J].矿业安全与环保, 2013, 40(1):17-20. doi: 10.3969/j.issn.1008-4495.2013.01.007Li Runzhi. Simulation study on propagation law of different-amount deposited coal dust explosion induced by gas explosion[J]. Mining Safety and Environmental Protection, 2013, 40(1):17-20. doi: 10.3969/j.issn.1008-4495.2013.01.007 [18] 薛少谦, 司荣军, 张延松.细水雾抑制瓦斯爆炸试验研究[J].矿业安全与环保, 2013, 40(1):4-7. doi: 10.3969/j.issn.1008-4495.2013.01.004Xue Shaoqian, Si Rongjun, ZhangYansong. Experimental study of gas explosion suppression by water mist[J]. Mining Safety and Environmental Protection, 2013, 40(1):4-7. doi: 10.3969/j.issn.1008-4495.2013.01.004 [19] 邱雁, 高广伟.充注惰气抑制矿井火区瓦斯爆炸机理[J].煤矿安全, 2003, 34(2):8-11. http://d.old.wanfangdata.com.cn/Periodical/mkaq200302005Qiu Yan, Gao Guangwei. Filling inert gas coal mine gas explosion suppression mechanism[J]. Coal Mine Safety, 2003, 34(2):8-11. http://d.old.wanfangdata.com.cn/Periodical/mkaq200302005 [20] Ingram J M, Averill A F, Battersby P N, et al. Extinction of premixed methane-air flames by water mis:Part1.Burning velocityt[J]. International Journal of Hydrogen Energy, 2012, 37:19250-19257. doi: 10.1016/j.ijhydene.2012.09.092 [21] 秦文茜, 王喜世, 谷睿, 等.超细水雾下瓦斯的爆炸压力和升压速率[J].燃烧科学与技术, 2012, 18(1):90-95. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201201015.htmQin Wenqian, Hei Wong, Gu Rui, et al. Methane explosion overpressure and overpressure rise rate with suppression by ultra-fine water Mist[J]. Journal of Combustion Science and Technology, 2012, 18(1):90-95. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201201015.htm [22] 裴蓓, 余明高, 陈立伟, 等.CO2-双流体细水雾抑制管道甲烷爆炸实验[J].化工学报, 2016, 67(7):3101-3108. http://d.old.wanfangdata.com.cn/Periodical/hgxb201607060Pei Bei, Yu Minggao, Chen Liwei, et al. Suppression effect of CO2-twin fluid water mist on methane/air explosion in vented duct[J]. Journal of Chemical Engineering, 2016, 67(7):3101-3108. http://d.old.wanfangdata.com.cn/Periodical/hgxb201607060 [23] Battersby P N, Averill A F, Ingram J M, et al. Suppression of hydrogen-oxygen-nitrogen explosion by fine water mist:Part 2.Mitigation of vented deflagrations[J]. International Iournal of Hydrogen Energy, 2012, 37:19258-19267. doi: 10.1016/j.ijhydene.2012.10.029 [24] 贾宝山, 温海燕, 梁运涛, 等.煤矿巷道内N2及CO2抑制瓦斯爆炸的机理特性[J].煤炭学报, 2013, 38(3):361-366. http://d.old.wanfangdata.com.cn/Periodical/mtxb201303002Jia Baoshan, Wen Haiyan, Liang Yuntao, et al. Mechanism characteristics of CO2 and N2 inhibiting methane explosions in coal mine roadways[J]. Journal of Coal Science, 2013, 38(3):361-366. http://d.old.wanfangdata.com.cn/Periodical/mtxb201303002