球形装药爆腔预测的准静态模型

于成龙 王仲琦

于成龙, 王仲琦. 球形装药爆腔预测的准静态模型[J]. 爆炸与冲击, 2017, 37(2): 249-254. doi: 10.11883/1001-1455(2017)02-0249-06
引用本文: 于成龙, 王仲琦. 球形装药爆腔预测的准静态模型[J]. 爆炸与冲击, 2017, 37(2): 249-254. doi: 10.11883/1001-1455(2017)02-0249-06
Yu Chenglong, Wang Zhongqi. Quasi-static model for predicting explosion cavity with spherical charges[J]. Explosion And Shock Waves, 2017, 37(2): 249-254. doi: 10.11883/1001-1455(2017)02-0249-06
Citation: Yu Chenglong, Wang Zhongqi. Quasi-static model for predicting explosion cavity with spherical charges[J]. Explosion And Shock Waves, 2017, 37(2): 249-254. doi: 10.11883/1001-1455(2017)02-0249-06

球形装药爆腔预测的准静态模型

doi: 10.11883/1001-1455(2017)02-0249-06
基金项目: 

国家科技重大专项 2016ZX05006-002

详细信息
    作者简介:

    于成龙(1988-),男,博士研究生,3120130145@bit.edu.cn

  • 中图分类号: O382

Quasi-static model for predicting explosion cavity with spherical charges

  • 摘要: 炸药土中爆炸形成爆腔的特征尺寸会影响远场地震波的幅频特征。为了准确预测爆腔的特征尺寸,本文建立了爆腔膨胀的准静态模型,该模型给出了无限均匀不可压缩的弹性介质中球形装药爆炸形成的粉碎区、裂隙区半径的解析表达式,并利用该模型计算讨论了不同条件下各分区尺度的变化。最后将该模型与现场实验、动力模型所得到的结果进行对比后表明,该模型与以上两者之间的误差约为5.4%~16.0%,能够较为准确地预测爆腔尺寸。
  • 图  1  球形爆腔响应区

    Figure  1.  Response regions in a spherical cavity

    图  2  不同破坏区域中的径向应力分布

    Figure  2.  Radial stress distribution in different fracture zones

    图  3  1 kg炸药爆炸产生空腔尺寸

    Figure  3.  Radius of cavity created by 1 kg TNT

    图  4  2 kg炸药爆炸产生空腔尺寸

    Figure  4.  Radius of cavity created by 2 kg TNT

    表  1  TNT特性参数

    Table  1.   Parameters of TNT

    爆速/
    (km·s-1)
    密度/
    (kg·m-3)
    p0/
    GPa
    γ
    6.91 6509.823.15
    下载: 导出CSV

    表  2  砂质黏土特性参数

    Table  2.   Parameters of Sandy-clay

    σ*/
    MPa
    σ0/
    MPa
    μ/
    GPa
    fk/
    kPa
    ρ/
    (kg·m-3)
    11.620.160.2501 600
    下载: 导出CSV

    表  3  测试现场土壤参数

    Table  3.   Parameters of soil in testing field

    粉质黏土密度/(g·cm-3)声速/(km·s-1)体积分数
    固相2.724 5000.623
    液相1.01 0000.365
    气相0.001 23400.012
    下载: 导出CSV

    表  4  爆炸成腔现场测试与计算结果对比

    Table  4.   Comparison of the cavity between tests and calculations

    药量/kg装药半径/cm实测爆腔半径/cm计算爆腔半径/cm误差/%
    竖直方向水平方向动力学模型准静态模型动力学模型准静态模型
    15.340.838.542.436.433.92~10.15.38~10.7
    15.341.539.542.436.432.17~7.347.77~12.2
    26.749.550.546.942.045.25~7.1312.2~16.0
    26.748.548.046.942.043.30~2.2911.5~12.6
    下载: 导出CSV
  • [1] Favreau R F. Generation of strain waves in rock by an explosion in a spherical cavity[J]. Journal of Geophysical Research, 1969, 74(17):4267-4280. doi: 10.1029/JB074i017p04267
    [2] 亨利奇J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987: 239-252.
    [3] Holmberg R, Persson P A. The Swedish approach to contour blasting[C]// Proceedings of the 4th Conference on Explosives and Blasting Technique. New Orleans, LA: ISEE, 1978: 113-127.
    [4] Ouchterlony F. Prediction of crack lengths in rock after cautious blasting with zero inter-hole delay[J]. Fragblast, 1997, 1(4):417-444. doi: 10.1080/13855149709408407
    [5] Ouchterlony F, Olsson M, Bergqvist I. Towards new Swedish recommendations for cautious perimeter blasting[J]. Fragblast, 2002, 6(2):235-261. doi: 10.1076/frag.6.2.235.8666
    [6] Kanchibolta S S, Valery W, Morrell S. Modeling fines in blast fragmentation and its impact on crushing and grinding[C]// The Australasian Institute of Mining and Metallurgy Proceeding of Explosion 99-A Conference on Rock Breaking. Australia: Brisbane, 1999: 137-144.
    [7] Chernikov A, Sher E. A quasistatic model of a confined explosion of a concentrated charge in a bed and in a block[J]. Journal of Mining Science, 1990, 26(4):355-362. doi: 10.1007/BF02506516
    [8] Forrestal M J, Tzou D Y. A Spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15bb10f7d851f075588b20216506d45c
    [9] Voitenko Y I. Fracture of solids by weak blasts[J]. Combustion, Explosion, and Shock Waves, 1995, 31(4):492-496. doi: 10.1007/BF00789374
    [10] Drukovanyi M F, Kravtov V S, Chernyavskii Y E, et al. Calculation of fracture zones created by exploding cylindrical charges in ledge rock[J]. Soviet Mining Science, 1976, 12(3):292-295. doi: 10.1007/BF02594873
    [11] Ding H, Zheng Z M. Source model of blasting vibration[J]. Science in China, Series E, 2002, 45(4):395-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ee200204007
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  4431
  • HTML全文浏览量:  1291
  • PDF下载量:  397
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-21
  • 修回日期:  2016-01-15
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回