Quasi-static model for predicting explosion cavity with spherical charges
-
摘要: 炸药土中爆炸形成爆腔的特征尺寸会影响远场地震波的幅频特征。为了准确预测爆腔的特征尺寸,本文建立了爆腔膨胀的准静态模型,该模型给出了无限均匀不可压缩的弹性介质中球形装药爆炸形成的粉碎区、裂隙区半径的解析表达式,并利用该模型计算讨论了不同条件下各分区尺度的变化。最后将该模型与现场实验、动力模型所得到的结果进行对比后表明,该模型与以上两者之间的误差约为5.4%~16.0%,能够较为准确地预测爆腔尺寸。Abstract: The characteristic dimension of the explosion-generated cavity in the soil is the most important influence factor for the feature of the far field seismic wave. In this paper we established a quasi-static model to predict the characteristic dimension of the cavity. When a spherical charge was detonated in the homogeneous, incompressible, infinite and elastic mediums, the analytical expressions of the fine crushing zone and the radial fissures zone were shown in this model. In addition, we also used this model to calculate the dimension of the divisions in different conditions. Finally, we conducted a comparison among the quasi-static model, the dynamic model and the experiments. The errors range of the quasi static model was 5.4%-16.0%. The results show that our model can be used to predict exactly the dimension of the cavity.
-
Key words:
- spherical cavity /
- theory of quasi-static /
- fine crushing zone /
- radial fissures zone
-
表 1 TNT特性参数
Table 1. Parameters of TNT
爆速/
(km·s-1)密度/
(kg·m-3)p0/
GPaγ 6.9 1 650 9.82 3.15 表 2 砂质黏土特性参数
Table 2. Parameters of Sandy-clay
σ*/
MPaσ0/
MPaμ/
GPaf k/
kPaρ/
(kg·m-3)11.6 2 0.16 0.2 50 1 600 表 3 测试现场土壤参数
Table 3. Parameters of soil in testing field
粉质黏土 密度/(g·cm-3) 声速/(km·s-1) 体积分数 固相 2.72 4 500 0.623 液相 1.0 1 000 0.365 气相 0.001 2 340 0.012 表 4 爆炸成腔现场测试与计算结果对比
Table 4. Comparison of the cavity between tests and calculations
药量/kg 装药半径/cm 实测爆腔半径/cm 计算爆腔半径/cm 误差/% 竖直方向 水平方向 动力学模型 准静态模型 动力学模型 准静态模型 1 5.3 40.8 38.5 42.4 36.43 3.92~10.1 5.38~10.7 1 5.3 41.5 39.5 42.4 36.43 2.17~7.34 7.77~12.2 2 6.7 49.5 50.5 46.9 42.04 5.25~7.13 12.2~16.0 2 6.7 48.5 48.0 46.9 42.04 3.30~2.29 11.5~12.6 -
[1] Favreau R F. Generation of strain waves in rock by an explosion in a spherical cavity[J]. Journal of Geophysical Research, 1969, 74(17):4267-4280. doi: 10.1029/JB074i017p04267 [2] 亨利奇J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987: 239-252. [3] Holmberg R, Persson P A. The Swedish approach to contour blasting[C]// Proceedings of the 4th Conference on Explosives and Blasting Technique. New Orleans, LA: ISEE, 1978: 113-127. [4] Ouchterlony F. Prediction of crack lengths in rock after cautious blasting with zero inter-hole delay[J]. Fragblast, 1997, 1(4):417-444. doi: 10.1080/13855149709408407 [5] Ouchterlony F, Olsson M, Bergqvist I. Towards new Swedish recommendations for cautious perimeter blasting[J]. Fragblast, 2002, 6(2):235-261. doi: 10.1076/frag.6.2.235.8666 [6] Kanchibolta S S, Valery W, Morrell S. Modeling fines in blast fragmentation and its impact on crushing and grinding[C]// The Australasian Institute of Mining and Metallurgy Proceeding of Explosion 99-A Conference on Rock Breaking. Australia: Brisbane, 1999: 137-144. [7] Chernikov A, Sher E. A quasistatic model of a confined explosion of a concentrated charge in a bed and in a block[J]. Journal of Mining Science, 1990, 26(4):355-362. doi: 10.1007/BF02506516 [8] Forrestal M J, Tzou D Y. A Spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15bb10f7d851f075588b20216506d45c [9] Voitenko Y I. Fracture of solids by weak blasts[J]. Combustion, Explosion, and Shock Waves, 1995, 31(4):492-496. doi: 10.1007/BF00789374 [10] Drukovanyi M F, Kravtov V S, Chernyavskii Y E, et al. Calculation of fracture zones created by exploding cylindrical charges in ledge rock[J]. Soviet Mining Science, 1976, 12(3):292-295. doi: 10.1007/BF02594873 [11] Ding H, Zheng Z M. Source model of blasting vibration[J]. Science in China, Series E, 2002, 45(4):395-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ee200204007