• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

球形装药爆腔预测的准静态模型

于成龙 王仲琦

张玉磊, 苏健军, 李芝绒, 蒋海燕, 仲凯, 王胜强. TNT内爆炸准静态压力特性[J]. 爆炸与冲击, 2018, 38(6): 1429-1434. doi: 10.11883/bzycj-2017-0170
引用本文: 于成龙, 王仲琦. 球形装药爆腔预测的准静态模型[J]. 爆炸与冲击, 2017, 37(2): 249-254. doi: 10.11883/1001-1455(2017)02-0249-06
ZHANG Yulei, SU Jianjun, LI Zhirong, JIANG Haiyan, ZHONG Kai, WANG Shengqiang. Quasi-static pressure characteristic of TNT's internal explosion[J]. Explosion And Shock Waves, 2018, 38(6): 1429-1434. doi: 10.11883/bzycj-2017-0170
Citation: Yu Chenglong, Wang Zhongqi. Quasi-static model for predicting explosion cavity with spherical charges[J]. Explosion And Shock Waves, 2017, 37(2): 249-254. doi: 10.11883/1001-1455(2017)02-0249-06

球形装药爆腔预测的准静态模型

doi: 10.11883/1001-1455(2017)02-0249-06
基金项目: 

国家科技重大专项 2016ZX05006-002

详细信息
    作者简介:

    于成龙(1988-),男,博士研究生,3120130145@bit.edu.cn

  • 中图分类号: O382

Quasi-static model for predicting explosion cavity with spherical charges

  • 摘要: 炸药土中爆炸形成爆腔的特征尺寸会影响远场地震波的幅频特征。为了准确预测爆腔的特征尺寸,本文建立了爆腔膨胀的准静态模型,该模型给出了无限均匀不可压缩的弹性介质中球形装药爆炸形成的粉碎区、裂隙区半径的解析表达式,并利用该模型计算讨论了不同条件下各分区尺度的变化。最后将该模型与现场实验、动力模型所得到的结果进行对比后表明,该模型与以上两者之间的误差约为5.4%~16.0%,能够较为准确地预测爆腔尺寸。
  • 图  1  球形爆腔响应区

    Figure  1.  Response regions in a spherical cavity

    图  2  不同破坏区域中的径向应力分布

    Figure  2.  Radial stress distribution in different fracture zones

    图  3  1 kg炸药爆炸产生空腔尺寸

    Figure  3.  Radius of cavity created by 1 kg TNT

    图  4  2 kg炸药爆炸产生空腔尺寸

    Figure  4.  Radius of cavity created by 2 kg TNT

    表  1  TNT特性参数

    Table  1.   Parameters of TNT

    爆速/
    (km·s-1)
    密度/
    (kg·m-3)
    p0/
    GPa
    γ
    6.91 6509.823.15
    下载: 导出CSV

    表  2  砂质黏土特性参数

    Table  2.   Parameters of Sandy-clay

    σ*/
    MPa
    σ0/
    MPa
    μ/
    GPa
    fk/
    kPa
    ρ/
    (kg·m-3)
    11.620.160.2501 600
    下载: 导出CSV

    表  3  测试现场土壤参数

    Table  3.   Parameters of soil in testing field

    粉质黏土密度/(g·cm-3)声速/(km·s-1)体积分数
    固相2.724 5000.623
    液相1.01 0000.365
    气相0.001 23400.012
    下载: 导出CSV

    表  4  爆炸成腔现场测试与计算结果对比

    Table  4.   Comparison of the cavity between tests and calculations

    药量/kg装药半径/cm实测爆腔半径/cm计算爆腔半径/cm误差/%
    竖直方向水平方向动力学模型准静态模型动力学模型准静态模型
    15.340.838.542.436.433.92~10.15.38~10.7
    15.341.539.542.436.432.17~7.347.77~12.2
    26.749.550.546.942.045.25~7.1312.2~16.0
    26.748.548.046.942.043.30~2.2911.5~12.6
    下载: 导出CSV
  • [1] Favreau R F. Generation of strain waves in rock by an explosion in a spherical cavity[J]. Journal of Geophysical Research, 1969, 74(17):4267-4280. doi: 10.1029/JB074i017p04267
    [2] 亨利奇J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987: 239-252.
    [3] Holmberg R, Persson P A. The Swedish approach to contour blasting[C]// Proceedings of the 4th Conference on Explosives and Blasting Technique. New Orleans, LA: ISEE, 1978: 113-127.
    [4] Ouchterlony F. Prediction of crack lengths in rock after cautious blasting with zero inter-hole delay[J]. Fragblast, 1997, 1(4):417-444. doi: 10.1080/13855149709408407
    [5] Ouchterlony F, Olsson M, Bergqvist I. Towards new Swedish recommendations for cautious perimeter blasting[J]. Fragblast, 2002, 6(2):235-261. doi: 10.1076/frag.6.2.235.8666
    [6] Kanchibolta S S, Valery W, Morrell S. Modeling fines in blast fragmentation and its impact on crushing and grinding[C]// The Australasian Institute of Mining and Metallurgy Proceeding of Explosion 99-A Conference on Rock Breaking. Australia: Brisbane, 1999: 137-144.
    [7] Chernikov A, Sher E. A quasistatic model of a confined explosion of a concentrated charge in a bed and in a block[J]. Journal of Mining Science, 1990, 26(4):355-362. doi: 10.1007/BF02506516
    [8] Forrestal M J, Tzou D Y. A Spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15bb10f7d851f075588b20216506d45c
    [9] Voitenko Y I. Fracture of solids by weak blasts[J]. Combustion, Explosion, and Shock Waves, 1995, 31(4):492-496. doi: 10.1007/BF00789374
    [10] Drukovanyi M F, Kravtov V S, Chernyavskii Y E, et al. Calculation of fracture zones created by exploding cylindrical charges in ledge rock[J]. Soviet Mining Science, 1976, 12(3):292-295. doi: 10.1007/BF02594873
    [11] Ding H, Zheng Z M. Source model of blasting vibration[J]. Science in China, Series E, 2002, 45(4):395-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ee200204007
  • 期刊类型引用(28)

    1. 朱剑雷,韩磊,方展翔,徐豫新. 活性材料与炸药环状复合内爆的准静态压力计算方法. 爆炸与冲击. 2025(04): 60-69 . 本站查看
    2. 万文超,张兆龙,吕宁,蔡斯渊,洪旸. 冲击波和破片联合作用下舱段毁伤效应分析. 舰船科学技术. 2024(03): 19-27 . 百度学术
    3. 张学瑞,周涛. 密闭空间中复合装药的能量释放特性. 爆炸与冲击. 2024(06): 41-49 . 本站查看
    4. 陈青华,陶彦光,梁振刚,杨佳岐. 双舱室模型内爆炸临舱压力载荷特性分析. 舰船科学技术. 2024(11): 75-79 . 百度学术
    5. 李营,杜志鹏,陈赶超,王诗平,侯海量,李晓彬,张攀,张伦平,孔祥韶,李海涛,郭君,姚术健,王志凯,殷彩玉. 舰艇爆炸毁伤与防护若干关键问题研究进展. 中国舰船研究. 2024(03): 3-60 . 百度学术
    6. 习修义,李俊,张娅,王志平,陈威,李营,李晓彬. 水雾环境下密闭舱室内爆准静态压力特性试验研究. 中国舰船研究. 2024(03): 174-181 . 百度学术
    7. 蒋欣利,张国凯,何勇,姚箭,王振,吴玉欣,刘举,王明洋. 密闭建筑温压炸药内爆炸后燃效应. 兵工学报. 2024(08): 2520-2530 . 百度学术
    8. 岳学森,周沪,孔祥韶,郑成,吴卫国. 舱室内爆载荷燃烧增强效应试验及仿真研究. 中国舰船研究. 2023(04): 223-232 . 百度学术
    9. 解江,潘汉源,李漩,王立轩,蒋逸伦,冯振宇. 内爆载荷作用下泄压容器准静态压力特性. 应用数学和力学. 2023(10): 1236-1249 . 百度学术
    10. 袁增森,徐振洋,潘博,李广尚. 不同不耦合系数下花岗岩爆破损伤特性的离散元模拟. 高压物理学报. 2022(01): 202-212 . 百度学术
    11. 刘正,聂建新,徐星,朱英中,刘攀,郭学永,闫石,张韬. 密闭空间内六硝基六氮杂异伍兹烷基复合炸药能量释放特性. 兵工学报. 2022(03): 503-512 . 百度学术
    12. 李怿,李典,侯海量,李永清. 基于密闭空间内爆的核爆冲击波载荷模拟试验和数值计算方法. 振动与冲击. 2022(17): 138-144 . 百度学术
    13. 黄魁,梁仕发,王励自,王启睿. 泄爆口对防护舱内TNT爆炸荷载的影响. 防护工程. 2021(01): 16-21 . 百度学术
    14. 焦立启,张权,李茂,张磊,张春辉. 典型舱内爆炸载荷对加筋板的毁伤特性. 中国舰船研究. 2021(02): 108-115+124 . 百度学术
    15. 孔祥韶,王子棠,况正,周沪,郑成,吴卫国. 密闭空间内爆炸载荷抑制效应实验研究. 爆炸与冲击. 2021(06): 24-37 . 本站查看
    16. 张鹏宙,董奇,杨沙. 爆炸载荷特征参数对无限长圆柱壳弹性动态响应的影响. 爆炸与冲击. 2021(06): 48-57 . 本站查看
    17. 赵英博,张子寒,赵跃堂. 弹药库内爆炸冲击波荷载研究. 防护工程. 2021(03): 46-54 . 百度学术
    18. 郑昆,侯卫国,马军,林文表,傅钊. 基于环境试验设备的锂离子电池燃爆特性分析. 环境技术. 2021(03): 186-188+197 . 百度学术
    19. 张磊,杜志鹏,高鹏,李营. 水面舰艇舱内爆炸毁伤载荷研究进展. 中国科学:物理学 力学 天文学. 2021(12): 54-64 . 百度学术
    20. 孙琦,董奇,杨沙,张刘成. 内爆炸准静态压力对球形容器弹塑性动态响应的影响. 含能材料. 2020(01): 25-31 . 百度学术
    21. 孔祥韶,况正,郑成,吴卫国. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究. 兵工学报. 2020(01): 75-85 . 百度学术
    22. 张龙,邹虹,张宝国,张继军,张东亮,孔德骞. 有限空间爆炸静态压力的温度补偿方法. 爆炸与冲击. 2020(03): 100-109 . 本站查看
    23. 蔡林刚,李晓彬,杜志鹏,张磊,李营. 密闭空间中内爆载荷冲量饱和现象研究. 武汉理工大学学报(交通科学与工程版). 2020(01): 85-90 . 百度学术
    24. 张玉磊,陈华,韩璐,李尚青,袁建飞,苏健军. 泄压口面积对温压炸药内爆炸准静态压力的影响. 火炸药学报. 2020(05): 521-525 . 百度学术
    25. 李彦超,徐鹏,蔡宣明,李海涛,秦国华. 爆炸载荷作用下含预制损伤膜片力学响应特性. 兵器装备工程学报. 2020(12): 149-154+176 . 百度学术
    26. 张广华,屈可朋,沈飞,王辉. 组合装药的撞击安全性与内爆威力试验研究. 高压物理学报. 2019(04): 175-181 . 百度学术
    27. 孙琦,董奇,杨沙,张刘成. 内爆炸准静态压力对球形容器弹性动态响应的影响. 含能材料. 2019(08): 698-707 . 百度学术
    28. 徐维铮,吴卫国. 密闭空间内爆炸准静态压力理论计算研究. 中国舰船研究. 2019(05): 124-130 . 百度学术

    其他类型引用(18)

  • 加载中
推荐阅读
基于简易冲击分解模型的爆轰驱动硅橡胶数值模拟及实验解读
刘军 等, 爆炸与冲击, 2025
活性材料与炸药环状复合内爆的准静态压力计算方法
朱剑雷 等, 爆炸与冲击, 2025
考虑药包爆破动-静时序作用的漏斗形成机理
康普林 等, 爆炸与冲击, 2025
坑道内爆炸条件下温压炸药的爆炸特性及其影响因素
纪玉国 等, 爆炸与冲击, 2024
高温高压对三元预混燃料爆炸特性的影响
朱源 等, 高压物理学报, 2025
Hns基pbx炸药爆轰驱动平板实验及产物状态方程参数确定
李淑睿 等, 高压物理学报, 2023
负压爆炸载荷作用下固支钢板变形研究
杨锐 等, 高压物理学报, 2023
Functionalization of chitosan with poly aromatic hydroxyl molecules for improving its antibacterial and antioxidant properties: practical and theoretical studies
Tamer, Tamer M., INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023
Non-monotonic effect of differential stress and temperature on mechanical property and rockburst proneness of granite under high-temperature true triaxial compression
GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2024
Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024
Powered by
图(4) / 表(4)
计量
  • 文章访问数:  4555
  • HTML全文浏览量:  1316
  • PDF下载量:  401
  • 被引次数: 46
出版历程
  • 收稿日期:  2015-07-21
  • 修回日期:  2016-01-15
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回