Application of removal trend method of pattern adapted continuous wavelet to blast vibration signal analysis
-
摘要: 为了更精确提取爆破振动信号峰值速度、能量等重要特征,必须对爆破振动加速度信号时域积分中的趋势项予以去除。通过对实测爆破振动加速度信号进行梯形数值积分,提出以时域积分后的爆破振动速度信号来构造模式自适应小波基的方法,并用此方法去除时域积分后爆破振动速度信号中的趋势项,然后对去除趋势项后的爆破振动速度信号进行能量特征分析。结果表明:模式自适应连续小波法成功去除了时域积分后爆破振动速度信号中的趋势项;与建立在传统Fourier变换基础上的频谱分析相比,小波变换的能量分析具有更精细的频率分辨率,更适合于对频率分辨率要求更高的爆破振动信号进行分析;各频率区间范围划分越宽,爆破振动加速度信号与速度信号各频率区间内能量分布的相关程度越高,反之,相关程度越低。Abstract: To accurately characterize such important characteristics as the peak velocity and the energy distribution in different frequency ranges of the blast vibration signal, this signal's trend after the time integral has to be removed. In this paper, the trapezoidal numerical integration of the measured blast vibration acceleration signal was carried out, the blast vibration velocity signal after the time integral as a method for the wavelet basis was proposed, the trend of the blast vibration velocity signal after the time integral was removed using this method, and the characteristics of energy distribution in different frequency ranges of the signal after the trend removal was analyzed. The results show that the trend of the blast vibration velocity signal after the time integral was successfully removed using the pattern adapted wavelet method. Compared with the frequency spectra analysis based on the conventional Fourier transform, the energy analysis based on the wavelet transform had a higher frequency resolution and was more suitable for the analysis that satisfied a higher requirement of frequency resolution for the signal. The more widely divided the different frequency ranges, the higher the degree of the energy distribution correlation in different frequency ranges between the measured blast acceleration signal and the blast vibration velocity signal and, on the other hand, the less widely divided, the lower the degree of the correlation.
-
Key words:
- blast vibration /
- energy distribution /
- pattern adapted wavelet /
- trend /
- wavelet basis
-
表 1 爆破振动信号各频率区间内能量分数
Table 1. Percentage of energy of blast vibration signals in different frequency ranges
加速度信号 速度信号 f/Hz 能量分数/% f/Hz 能量分数/% 0~20 0.32 0~20 0.65 20~40 1.28 20~40 1.41 40~60 8.95 40~60 7.18 60~80 4.76 60~80 8.66 80~100 25.49 80~100 25.06 100~120 34.92 100~120 41.38 120~140 14.96 120~140 10.61 140~512 9.32 140~512 5.05 -
[1] 凌同华, 李夕兵.地下工程爆破振动信号能量分布特征的小波包分析[J].爆炸与冲击, 2004, 24(1):63-68. doi: 10.3321/j.issn:1001-1455.2004.01.011Ling Tonghua, Li Xibing. The features of energy distribution for blast vibration signals in underground engineering by wavelet packet analysis[J]. Explosion and Shock Waves, 2004, 24(1):63-68. doi: 10.3321/j.issn:1001-1455.2004.01.011 [2] 宗琦, 汪海波, 周胜兵.爆破地震效应的监测和控制技术研究[J].岩石力学与工程学报, 2008, 27(5):938-945. doi: 10.3321/j.issn:1000-6915.2008.05.009Zong Qi, Wang Haibo, Zhou Shengbing. Research on monitoring and controlling techniques considering effects of seismic shock[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5):938-945. doi: 10.3321/j.issn:1000-6915.2008.05.009 [3] 娄建武, 龙源, 方向, 等.基于反应谱值分析的爆破震动破坏评估研究[J].爆炸与冲击, 2003, 23(1):41-46. doi: 10.3321/j.issn:1001-1455.2003.01.008Lou Jianwu, Long Yuan, Fang Xiang, et al. Study on blasting vibration damage based on response spectrum[J]. Explosion and Shock Waves, 2003, 23(1):41-46. doi: 10.3321/j.issn:1001-1455.2003.01.008 [4] 周英杰. 加速度测试积分位移算法及其应用研究[D]. 重庆: 重庆大学, 2013: 1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D356208Zhou Yingjie. A study on integral algorithm for acceleration test to get displacement and application[D]. Chongqing: Chongqing University, 2013: 1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D356208 [5] 温广瑞, 李杨, 廖与禾, 等.基于精确信息重构的故障转子系统振动加速度信号积分方法[J].机械工程学报, 2013, 49(8):1-9. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201308001Wen Guangrui, Li Yang, Liao Yuhe, et al. Faulty rotor system vibration acceleration signal integration method based on precise information reconstruction[J]. Journal of Mechanical Engineering, 2013, 49(8):1-9. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201308001 [6] 陈为真, 汪秉文, 胡晓娅.基于时域积分的加速度信号处理[J].华中科技大学学报(自然科学版), 2010, 38(1):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000645158Chen Weizhen, Wang Bingwen, Hu Xiaoya. Acceleration signal processing by aumerical integration[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(1):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000645158 [7] 龙源, 谢全民, 钟明寿, 等.爆破震动测试信号预处理分析中趋势项去除方法研究[J].工程力学, 2012, 29(10):63-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205321457Long Yuan, Xie Quanmin, Zhong Mingshou, et al. Research on trend removing methods in preprocessing analysis of blasting vibration monitoring signals[J]. Engineering Mechanics, 2012, 29(10):63-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205321457 [8] 陆凡东, 方向, 郭涛, 等.EMD与SLS法在爆破振动加速度信号时域积分中的应用[J].振动与冲击, 2012, 31(9):90-93, 101. doi: 10.3969/j.issn.1000-3835.2012.09.018Lu Fandong, Fang Xiang, Guo Tao, et al. Application of EMD and SLS in time integration of blasting vibration acceleration[J]. Journal of Vibration and Shock, 2012, 31(9):90-93, 101. doi: 10.3969/j.issn.1000-3835.2012.09.018 [9] 蒋良潍, 姚令侃, 吴伟.边坡振动台模型实验动位移的加速度时程积分探讨[J].防灾减灾工程学报, 2009, 29(3):261-266. http://d.old.wanfangdata.com.cn/Periodical/dzxk200903004Jiang Liangwei, Yao Lingkan, Wu Wei. Study on calculation of dynamic displacement from time integration of acceleration in shaking table model tests of side slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(3):261-266. http://d.old.wanfangdata.com.cn/Periodical/dzxk200903004 [10] 凌同华, 张胜, 陈倩倩, 等.模式自适应小波构造与添加及其在爆破振动信号分析中的应用[J].振动与冲击, 2014, 33(12):53-57, 120. http://d.old.wanfangdata.com.cn/Periodical/zdycj201412009Ling Tonghua, Zhang Sheng, Chen Qianqian, et al. Pattern adapted wavelet construction and addition and its application in blast vibration signal analysis[J]. Journal of Vibration and Shock, 2014, 33(12):53-57, 120. http://d.old.wanfangdata.com.cn/Periodical/zdycj201412009 [11] 程正兴, 杨守志, 冯晓霞.小波分析的理论、算法、进展和应用[M].北京:国防工业出版社, 2007:1-11. [12] 张胜, 凌同华, 刘浩然, 等.模式自适应小波时能密度法及其在微差爆破振动信号分析中的应用[J].煤炭学报, 2014, 39(10):2007-2013. http://d.old.wanfangdata.com.cn/Periodical/mtxb201410009Zhang Sheng, Ling Tonghua, Liu Haoran, et al. Pattern adapted wavelet time-energy density method and its application in millisecond blast vibration signal analysis[J]. Journal of China Coal Society, 2014, 39(10):2007-2013. http://d.old.wanfangdata.com.cn/Periodical/mtxb201410009 [13] Mesa H. Adapted wavelets for pattern detection[C]//Progress in Pattern Recognition, Image Analysis and Applications. Berlin Heidelberg: Springer, 2005: 933-944. [14] Chapa J O, Rao R M. Algorithms for designing wavelets to match a specified signal[J]. IEEE Transactions on Signal Processing, 2000, 48(12):3395-3406. doi: 10.1109/78.887001 [15] 管晓明, 傅洪贤, 王梦恕.隧道近距下穿山坡楼房爆破振动测试研究[J].岩土力学, 2014, 35(7):1995-2003. http://d.old.wanfangdata.com.cn/Periodical/ytlx201407027Guan Xiaoming, Fu Hongxian, Wang Mengshu. Blasting vibration characteristics monitoring of tunnel under-passing hillside buildings in short-distance[J]. Rock and Soil Mechanics, 2014, 35(7):1995-2003. http://d.old.wanfangdata.com.cn/Periodical/ytlx201407027 [16] 中国生, 敖丽萍, 赵奎.基于小波包能量谱爆炸参量对爆破振动信号能量分布的影响[J].爆炸与冲击, 2009, 29(3):300-305. doi: 10.3321/j.issn:1001-1455.2009.03.013Zhong Guosheng, Ao Liping, Zhao Kui. Influence of explosion parameters on energy distribution of blasting vibration signal based on wavelet packet energy spectrum[J]. Explosion and Shock Waves, 2009, 29(3):300-305. doi: 10.3321/j.issn:1001-1455.2009.03.013 期刊类型引用(17)
1. 范国轩,吴海燕,林伟国,张磊,陈晓磊. 基于正负区间统计分析的信号趋势项自适应消除方法. 北京化工大学学报(自然科学版). 2024(05): 77-85 . 百度学术
2. 徐振洋,莫宏毅,包松,赵建宇,王雪松,刘鑫,陈占扬. 基于VMD-Teager的露天边坡爆破振动信号能量特征研究. 振动与冲击. 2023(07): 77-88+105 . 百度学术
3. 莫宏毅,徐振洋,刘鑫,张久洋,姜厦航. 基于SSA-VMD的爆破振动信号趋势项去除方法. 振动与冲击. 2023(11): 304-312+330 . 百度学术
4. 付晓强,俞缙,刘纪峰,杨仁树,戴良玉. 隧道爆破振动信号畸变校正与混沌多重分形特征研究. 振动与冲击. 2022(06): 76-85 . 百度学术
5. 鲁超,吴贤振,刘建伟,程杰. 基于小波与EMD的井下深孔爆破振动信号对比分析. 中国矿业. 2021(02): 84-90 . 百度学术
6. 贾贝,凌天龙,侯仕军,刘殿书. 基于变分模态分解的延时识别法在短延时微差爆破中的应用. 北京理工大学学报. 2021(04): 341-348 . 百度学术
7. 李晨,梁书锋,刘传鹏,程健,刘殿书. 基于改进的集合经验模态分解的爆破振动信号趋势项消除方法. 北京理工大学学报. 2021(06): 636-641 . 百度学术
8. 付晓强,张仁巍,雷振,刘纪峰,崔秀琴,刘幸. 煤矿立井爆破信号趋势项和噪声消除方法. 兰州工业学院学报. 2020(01): 57-62 . 百度学术
9. 付晓强,杨仁树,崔秀琴,刘幸,刘纪峰,雷振. 冻结立井爆破振动信号多重分形去趋势波动分析. 振动与冲击. 2020(06): 51-58 . 百度学术
10. 贾贝,凌天龙,侯仕军,刘殿书,王潇. 变分模态分解在爆破信号趋势项去除中的应用. 爆炸与冲击. 2020(04): 123-131 . 本站查看
11. 付晓强,杨仁树,刘纪峰,张会芝,张仁巍. 冻结立井爆破近区井壁振动信号基线漂移校正和消噪方法. 爆炸与冲击. 2020(09): 100-112 . 本站查看
12. 付晓强,刘纪峰,黄凌君,蔡雪霁,王军芳,刘静. 城市地铁区间隧道爆破振动信号趋势项和噪声消除方法. 铁道科学与工程学报. 2020(09): 2328-2337 . 百度学术
13. 付晓强,崔秀琴,杨立云,雷振,蔡雪霁,李阳. 变分模态分解算法在煤矿井筒爆破信号趋势项消除中的应用. 煤矿安全. 2020(10): 248-252 . 百度学术
14. 钱如峰,徐洋,盛晓伟,程福荣. 基于小波变换的簇绒地毯织机噪声源识别. 东华大学学报(自然科学版). 2019(04): 571-575+582 . 百度学术
15. 王勇胜. 深大调压井开挖爆破振动效应分析及安全评价. 中国水能及电气化. 2019(10): 61-65 . 百度学术
16. 焦伟,顾克秋,赵跃跃. 基于小波能谱和熵谱的炮架结构冲击响应分析. 兵器装备工程学报. 2018(01): 102-105 . 百度学术
17. 张军,牛宝良,黄含军,黄海莹,王军评,岳晓红. 爆炸分离冲击数据的零漂校正. 装备环境工程. 2018(05): 6-9 . 百度学术
其他类型引用(9)
-