Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

压应力场中爆生裂纹分布与扩展特征实验分析

杨立云 马佳辉 王学东 张五成 张磊

李刚, 王晓放, 殷硕, 李文亚. 粒子入射角度对冷喷涂涂层形成的影响[J]. 爆炸与冲击, 2007, 27(5): 477-480. doi: 10.11883/1001-1455(2007)05-0477-04
引用本文: 杨立云, 马佳辉, 王学东, 张五成, 张磊. 压应力场中爆生裂纹分布与扩展特征实验分析[J]. 爆炸与冲击, 2017, 37(2): 262-268. doi: 10.11883/1001-1455(2017)02-0262-07
LI Gang, WANG Xiao-fang, YIN Shuo, LI Wen-ya. Study of incidence angle of particle on its coating formation in cold spraying[J]. Explosion And Shock Waves, 2007, 27(5): 477-480. doi: 10.11883/1001-1455(2007)05-0477-04
Citation: Yang Liyun, Ma Jiahui, Wang Xuedong, Zhang Wucheng, Zhang Lei. Experimental study on blasting crack initiation and propagation behaviorin compression stress field[J]. Explosion And Shock Waves, 2017, 37(2): 262-268. doi: 10.11883/1001-1455(2017)02-0262-07

压应力场中爆生裂纹分布与扩展特征实验分析

doi: 10.11883/1001-1455(2017)02-0262-07
基金项目: 

国家自然科学基金项目 51404273

高等学校博士学科点专项科研基金(新教师类)项目 20120023120020

详细信息
    作者简介:

    杨立云(1983—),男,博士,副教授,yangly@cumtb.edu.cn

  • 中图分类号: O381;O348.2

Experimental study on blasting crack initiation and propagation behaviorin compression stress field

  • 摘要: 采用动静组合加载实验装置和数字激光焦散线实验系统,进行了0、3、6、9 MPa等4种压应力场中PMMA试件的爆破致裂实验,分析了沿静态主应力方向扩展的裂纹运动学和力学行为。实验结果表明:首先,静态竖向载荷在预制炮孔周围产生应力集中,在炮孔壁上下端部处出现最大拉应力;随后,在动态爆炸载荷的叠加作用下,裂纹优先在炮孔壁上最大拉应力位置处起裂,并沿最大主应力方向扩展;裂纹扩展过程中,静态竖向载荷越大,裂纹扩展速度越大,且裂纹尖端应力强度因子值越大。
  • 薄壁金属构件由于其低成本和高吸能性而在汽车结构中作为一种性能良好的缓冲吸能元件得到广泛的应用。为了确保碰撞过程中乘员和汽车主要部件的安全, 薄壁构件作为受撞时主要的承载和吸能元件[1], 在耐撞性设计中, 薄壁构件应能够以稳定可控的变形方式吸收尽可能多的能量; 同时最大限度的降低碰撞过程中薄壁构件所承受的压溃载荷, 较高的压溃载荷会使汽车在碰撞过程中产生较大的加速度, 使车内乘员受到严重的伤害, 故在碰撞过程最大压溃载荷应尽可能的小[2]

    诱导结构是薄壁构件应力集中的地方, 可以控制薄壁构件变形形式和降低碰撞时的压溃载荷, 从而使乘员免受高压溃力, 同时也降低了其它部件所承受的压溃载荷。Y.B.Cho等[3]采用数值方法对具有孔洞型诱导结构的前梁装置进行了抗撞性模拟研究, 计算表明设定合理的诱导结构能提高能量吸收同时降低压溃载荷; 张涛等[4]研究了薄壁组合结构及其设计缺陷结构的吸能特性, 提出设置一定的诱导缺陷可以降低碰撞过程中的峰值载荷。

    本文中提出在薄壁圆管上增加圆弧形凹槽的诱导变形原则, 研究其对抗撞性的影响。在碰撞分析中大多采用最大峰值压溃力为评价指标, 为了提高结构的抗撞性, 同时满足轻量化的设计要求, 综合考虑比吸能、最大峰值压溃力及压溃力的平均值, 建立多目标薄壁构件优化任务, 并结合径向基函数法构造优化目标的近似函数, 采用理想点法求解多目标优化问题, 详细分析凹槽数量与其半径对薄壁构件抗撞性的影响, 以期为吸能构件抗撞性设计提供依据。

    (1) 最大峰值压溃力Fmax:在压溃过程中沿轴向产生的压溃载荷的最大值[5]。最大峰值压溃力会引起较高的加速度, 是碰撞过程中需要考虑的重要参数。为了减小对乘员的伤害, 故希望在整个压溃过程中最大峰值压溃力尽可能的小。

    (2) 平均压溃力Fm:薄壁构件在碰撞过程中的平均压溃力为:

    Fm=δmax0F dδδmax (1)

    式中:F为压溃力, δ为压溃位移, δmax最大压溃位移。在碰撞过程中压溃力一般围绕平均压溃力波动。

    (3) 压溃力效率η, 即平均压溃力与最大压溃力之比, 其表达式为:

    η=FmFmax (2)

    压溃力效率η综合考虑了平均压溃力与最大压溃力对薄壁构件抗撞性的影响, η越大说明最大压溃力越小越接近平均压溃力, 压溃力曲线平稳, 理想的吸能构件η应为1。

    (4) 比吸能χ, 单位质量的薄壁结构所吸收的能量[6]为:

    χ=EW (3)

    式中:E为薄壁结构所吸收的总能量, W为薄壁结构的总质量。为了提高结构的抗撞性, 同时满足轻量化的设计要求, 应使薄壁构件的比吸能最大化。

    以比吸能和压溃力效率为优化设计指标, 在优化设计过程中, 有2个设计参数即凹槽数量m和凹槽半径r, 它们在一定范围内变化。该多目标优化问题可表示为

    {maxη(m,r)maxχ(m,r) s. t. mminmmmaxrminrrmax (4)

    事实上, 目标函数很难用数学方法精确的表达, 本文中采用径向基函数模型构造其近似表达式, 并采用理想点法寻找多目标问题最优解。

    建立薄壁金属圆管模型, 如图 1所示, 圆管下端固定, 上端自由并承受质量25kg, 冲击速度v=15.49m/s的刚性体冲击作用, 圆管厚度t=0.8mm, 长度L=90mm, 直径d=31mm。

    图  1  薄壁圆管模型
    Figure  1.  Analysis model of the thin-walled cylinder

    薄壁构件的材料选为高强度钢, 密度ρ=7.82×103 kg/m3, 弹性模量E=207.2GPa, 泊松比ν=0.3, 屈服应力σ0=446MPa。高强度钢材料的动态变形受材料应变率的影响较大, 需要在材料模型中考虑应变率的影响。一般采用Cowper-Symonds塑性材料模型[7]:

    σy=σ0(1+ε/c)1/p (5)

    式中:σy为考虑应变率之后的动态屈服应力, σ0为静态屈服应力, ε为应变率, c=40s-1p=5为该模型中与应变率相关的参数, 静态应力应变变化曲线如图 2所示。

    图  2  静态应力应变关系曲线
    Figure  2.  Relation between static stress and strain

    为了验证有限元分析的精确性, 与文献[7]中的实验数据进行比较, 表 1给出了薄壁构件原模型由LS-DYNA计算得到的最大峰值压溃力、总吸能、最大压溃位移及其与文献[7]中对应的实验值。通过对比可以看出有限元结果和实验值之间的相对误差很小, 数值模拟的结果与实验值能够较好地吻合。

    表  1  有限元模型结果与实验结果[7]对比
    Table  1.  Comparison of experimental result[7] and finife element model
    Fmax/kN E/kJ δmax/mm
    实验[7] 有限元 ε/% 实验[7] 有限元 ε/% 实验[7] 有限元 ε/%
    120.30 120.09 0.2 2.95 2.94 0.3 64.10 58.40 8.9
    下载: 导出CSV 
    | 显示表格

    诱导结构是薄壁构件应力集中的地方, 使结构的屈曲变形稳定。为了提高原模型在碰撞过程中的抗撞性, 本文对原模型结构做了改进, 如图 3所示, 沿光滑表面的薄壁结构(原模型结构尺寸不变)添加均布的圆弧形凹槽。现分别施加1~4个半径为0.8mm诱导槽, 在前文的工况下对4个模型进行实验及有限元数值模拟计算得到其碰撞响应, 如表 2所示。由表 2可知, 改进后的模型与原模型相比η值增大, 最大峰值压溃力显著降低了, 平均压溃力却没有明显减少, 压溃力曲线趋于平稳; 而吸能几乎没有受到影响, 由于增加凹槽导致结构质量的增加, 因而比吸能χ有所减小, 可见添加圆弧形凹槽, 显著提高了薄壁结构的抗撞性。

    图  3  改进结构模型
    Figure  3.  The improved structural model
    表  2  改进模型的有限元分析结果及实验值对比
    Table  2.  Comparison of the improved model between experiment and simulation
    m Fmax/kN Fm/kN η E/kJ χ/(kJ·kg-1)
    实验 有限元 实验 有限元
    0 120.30 120.09 50.36 0.420 0 2.95 2.94 55.60
    1 80.26 77.82 46.14 0.592 9 2.93 2.91 54.29
    2 91.63 88.39 42.48 0.480 6 2.87 2.90 53.90
    3 94.32 89.26 42.32 0.474 1 2.90 2.93 54.26
    4 90.53 87.12 40.92 0.469 7 2.91 2.94 54.24
    下载: 导出CSV 
    | 显示表格

    为了进一步研究凹槽结构对抗撞性的影响, 取凹槽数m=1~4, 半径r=0.8~3.2mm。采用全因子实验设计, 在mr的设计域内, 选用了28个样本点研究其抗撞性, 并对凹槽结构进行优化设计。表 2所示为原模型和4个改进模型的有限元分析结果与实验值对比, 表 2m=0表示未加凹槽, 为原模型, m=1~4表示加入0.8mm凹槽的数量, 也即是4个改进模型, 从数据对比看有限元分析结果与实验值较接近, 从而验证了改进模型有限元分析的可靠性。为了节约资源, 对余下的24个设计样本点只进行有限元分析计算从而得到其碰撞响应。

    该多目标优化问题数学表达式可进一步表示为:

    {minη(m,r)minχ(m,r) s. t. 1m40.8 mmr3.2 mm (6)

    径向函数[8-11]是以预测点与样本点间的欧氏距离为自变量的一族函数。以径向函数为基函数, 通过线性组合构造出来的近似模型即为径向基函数模型。

    在设计空间中, 关于设计变量响应函数的近似表达式可以定义为:

    ˜y(x)=ni=1λiφ( (7)

    式中:λT=(λ1, λ2, …, λn)为权系数, ‖x-xi‖为预测点和样本点间的欧氏距离, φ(‖x-xi‖)为径向函数。将n个样本点及每个样本点对应的响应函数值代入到式(7), 可以得到方程组矩阵形式为:

    \boldsymbol{Y}=\boldsymbol{\Phi} \boldsymbol{\lambda} (8)

    式中: \boldsymbol{Y}=\left[\tilde{y}\left(x_{1}\right), \tilde{y}\left(x_{2}\right), \cdots, \tilde{y}\left(x_{n}\right)\right]^{\mathrm{T}}, \boldsymbol{\Phi}=\left[\Phi_{i j}\right]=\left[\varphi\left(\left\|x_{i}-x_{j}\right\|\right)\right](i, j=1, 2, \cdots, n)

    在得到响应函数的径向基函数模型后, 需要对近似模型精度进行验证, 通过额外测试点(不包括样本点)决定系数R2和误差平方和方均根 \sqrt{\overline{R^{2}}}来验证径向基函数模型对设计变量的拟合情况。决定系数R2和误差平方和方均根 \sqrt{\overline{R^{2}}}分别定义为:

    \begin{aligned} & R^{2}=1-\frac{\sum\limits_{i=1}^{n}\left(y_{i}-\tilde{y}_{i}\right)^{2}}{\sum\limits_{i=1}^{n}\left(y_{i}-\bar{y}_{i}\right)^{2}} \end{aligned} (9)
    \begin{aligned} \sqrt{\overline{R^{2}}}=\sqrt{\frac{\sum\limits_{i=1}^{n}\left(y_{i}-\tilde{y}_{i}\right)^{2}}{n}} \end{aligned} (10)

    式中:n是测试点的个数, 其中yii个测试点的有限元分析结果yi的平均值, \tilde{y}_{i}是第i个测试点的径向基函数近似值。

    多目标优化问题在数学上一般可表示为

    \left\{\begin{array}{l} \min f_{1}\left(x_{1}, \cdots, x_{n}\right) \\ \vdots \\ \min f_{p}\left(x_{1}, \cdots, x_{n}\right) \\ \text { s. t. } \quad g_{i}(x) \geqslant 0, i=1, 2, \cdots, m \\ \quad \quad\quad h_{i}(x)=0, i=1, 2, \cdots, l \end{array}\right. (11)

    先求解p个单目标问题

    \min\limits_{x \in D} f_{j}(x), \quad j=1, 2, \cdots, p (12)

    设其最优值为fj*, 称f*=(f1*, …, fp*)T为值域中的一个理想点, 因为一般很难达到, 故在期望的某种度量下, 寻求距离f*最近的f作为近似值。最直接的方法是构造评价函数并极小化, 既求解:

    \min\limits_{x \in D} \varphi[f(x)]=\sqrt{\sum\limits_{i=1}^{p}\left[f_{i}(x)-f_{i}^{\star}\right]^{2}} (13)

    并将它的最优解x*作为式(8)在这种意义下的最优解。

    于是多目标优化问题可进一步表示为

    \left\{\begin{array}{l} \min f_{1}(x)=-\chi(x) \\ \min f_{2}(x)=-\eta(x) \\ \text { s. t. } 1 \leqslant m \leqslant 4 \\ 0.8 \mathrm{~mm} \leqslant r \leqslant 3.2 \mathrm{~mm} \end{array}\right. (14)

    对于带有圆弧形凹槽的薄壁构件, 凹槽数量m和半径r是影响结构抗撞性能的2个重要参数, 通过有限元计算得到了28个样本点的碰撞响应, 从而得到ηχ关于设计变量mr的响应函数和响应面, 如图 4~5所示。从图中可见凹槽数量半径对结构的比吸能和压溃力效率有很大影响, 呈现出一定的非线性关系, 不具备单调性。

    图  4  比吸能与变量mr的变化关系
    Figure  4.  Specific energy absorption varied with m and r
    图  5  压溃力效率与变量mr的变化关系
    Figure  5.  Crushing force efficiency varied with m and r

    表 3给出了χη这2个单目标函数的优化值, 可见2个单目标函数最优解不同, 2个目标函数很难同时达到最优。采用理想点法对式(14)的多目标优化问题进行求解, 得到带有圆弧形凹槽薄壁构件的最优值为m=3和r=1.224mm, χ=53.723kJ/kg, η=0.673。图 6分别给出了采用有限元方法计算得到的最大的比吸能和压溃力效率的结构, 以及采用理想点法计算得到多目标问题的优化结构。

    图  6  优化后薄壁结构模型
    Figure  6.  Optimized thin-walled structure models
    表  3  单目标函数优化结果
    Table  3.  Optimums of single objective functions
    单目标函数 m r/mm χ/(kJ·kg-1) η
    max χ 1 0.800 54.29 0.592 9
    max η 4 1.198 51.94 0.682 5
    下载: 导出CSV 
    | 显示表格

    优化后构件的η=0.673, 比表 2m=0的原模型的η=0.420 0提高了52.90%, 而χ=53.723kJ/kg, 与55.06kJ/kg相比仅降低了4.05%。图 7~8分别给出了该多目标问题达到最优时, 在碰撞过程中压溃力和吸收能量随压溃位移和压溃时间变化情况, 并将其与相应条件的原模型进行比较。从压溃载荷图 7可以看出, 与原模型相比优化后构件最大峰值压溃力降低了52.1%, 最大峰值压溃力更接近平均压溃力, 压溃力曲线平稳, 可见以η为优化设计指标是合理的, η综合考虑了最大峰值压溃力和压溃力曲线的平稳性。图 8所示为总吸能与压溃时间的关系, 可以看出, 优化后构件所吸收的能量并没有很大的减少, 在碰撞时间为10ms时, 优化后构件所吸收的能量与同时间原模型吸收的能量比较相近了, 可见优化后构件的抗撞性得到了显著提高。

    图  7  压溃力随压溃位移变化关系
    Figure  7.  Crushing force varied with crushing displacement
    图  8  总吸能随压溃时间变化关系
    Figure  8.  Total energy absorption varied with crushing time

    优化后构件在碰撞过程中发生叠缩变形如图 9所示, 这种变形模式有利于结构在变形过程中吸收更多的碰撞动能。带有圆弧形诱导凹槽结构的薄壁构件变形首先在凹槽处开始, 最大的塑性弯矩和塑性铰发生在凹槽处, 薄壁结构在该处容易压溃。凹槽能控制塑性变形, 塑性应变在该处达到最大值, 这也就意味着沿着变形的凹槽处能消散大量的压溃力, 大部分的冲击能在该处以塑性变形的方式被吸收。可见增加圆弧形凹槽诱导结构后, 可大大提高薄壁构件的抗撞性能。

    图  9  优化后构件叠缩变形
    Figure  9.  Progressive folding deformation of optimized component

    对薄壁圆管结构进行改进引入圆弧形诱导凹槽, 以比吸能和压溃力效率为评价指标, 建立了兼顾最大峰值压溃力、平均压溃力及比吸能的多目标优化问题的数学模型, 研究凹槽数量和半径对抗撞性能的影响。数值分析的结果表明:引入圆弧形诱导凹槽结构在保证不减少薄壁构件吸能能力的情况下达到了减小最大峰值压溃力、使压溃力曲线平稳的目的。优化结果表明最优构件的最大峰值压溃力比原模型减小了52.1%, 压溃力曲线与原模型相比更趋于平稳, 从而有效的保证了碰撞过程中乘员的安全性; 从吸能角度来看, 最优构件所吸能的能量并没有很大减少, 在碰撞时间为10ms时, 最优构件所吸收的能量达到了与同一时间原模型吸收的能量; 而最优构件的比吸能只比原模型减少了4.05%, 可见引入圆弧形诱导凹槽提高了薄壁结构的抗撞性, 为进一步研究吸能构件的抗撞性设计提供了依据。

  • 图  1  裂纹尖端焦散线示意图

    Figure  1.  Schematic illustration of caustics at a crack tip

    图  2  圆孔周围焦散线示意图

    Figure  2.  Schematic illustration of caustics surrounding a circle hole

    图  3  新型焦散线实验系统

    Figure  3.  Optical setup of new-type caustics system

    图  4  动静组合加载系统

    Figure  4.  Static and dynamic combination loading system

    图  5  围压作用下炮孔周围的焦散线

    Figure  5.  Caustics induced by the compression

    图  6  爆破后的试件

    Figure  6.  Specimens after blasting

    图  7  不同时刻的焦散线照片(试件S4)

    Figure  7.  Caustics of specimen S4 at different times

    图  8  裂纹扩展长度随时间的变化

    Figure  8.  Crack length varying with time

    图  9  应力强度因子随时间的变化

    Figure  9.  Dynamic stress intensity factor varying with time

    表  1  炮孔周围静态焦散线结果

    Table  1.   Result of caustics surrounding the blasthole

    (p-q)/MPaD/mm
    理论实验
    06.06.0
    311.111.0
    613.213.0
    914.614.5
    下载: 导出CSV
  • [1] Kutter H K, Fairhurst C. On the fracture process in blasting[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3):181-202. https://www.sciencedirect.com/science/article/pii/0148906271900180
    [2] Rossmanith H P, Knasmillner R E, Daehnke A, et al. Wave propagation, damage evolution, and dynamic fracture extension: Part Ⅱ: Blasting[J]. Materials Science, 1996, 32(4):403-410. doi: 10.1007/BF02538964
    [3] Lu Wenbo, Chen Ming, Geng Xiang, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations[J]. Tunnelling and Underground Space Technology, 2012, 29:31-39. doi: 10.1016/j.tust.2011.12.008
    [4] 刘殿书, 王万富, 杨吕俊.初始应力条件下爆破机理的动光弹实验研究[J].煤炭学报, 1999, 24(6):612-614. doi: 10.3321/j.issn:0253-9993.1999.06.012

    Liu Dianshu, Wang Wanfu, Yang Lüjun. Holophotoelasticity study on mechanism of blasting under initiative stress field[J]. Journal of China Coal Society, 1999, 24(6):612-614. doi: 10.3321/j.issn:0253-9993.1999.06.012
    [5] 肖正学, 张志呈, 李端明.初始应力场对爆破效果的影响[J].煤炭学报, 1996, 21(5):497-501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600766010

    Xiao Zhengxue, Zhang Zhicheng, Li Duanming. The influence of initial stress field on blasting[J]. Journal of China Coal Society, 1996, 21(5):497-501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600766010
    [6] 谢源, 刘庆林.附加载荷下介质爆破特性的全息动光弹试验研究[J].工程爆破, 2000, 6(2):11-15. doi: 10.3969/j.issn.1006-7051.2000.02.003

    Xie Yuan, Liu Qinglin. Study on blasting characteristic of medium under high stress conditions by dynamic holophotoelastic method[J]. Engineering Blasting, 2000, 6(2):11-15. doi: 10.3969/j.issn.1006-7051.2000.02.003
    [7] 高全臣, 赫建明, 冯贵文, 等.高应力岩巷的控制爆破机理与技术[J].爆破, 2003, 20(Suppl):52-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200301854425

    Gao Quanchen, Hao Jianming, Feng Guiwen, et al. Mechanism and technology of controlled blasting for high stress rock tunneling[J]. Blasting, 2003, 20(Suppl):52-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200301854425
    [8] 戴俊.深埋岩石隧洞的周边控制爆破方法与参数确定[J].爆炸与冲击, 2004, 24(6):493-498. doi: 10.3321/j.issn:1001-1455.2004.06.003

    Dai Jun. The controlled contour blasting technique and its parameter determination for rock tunnel at depth[J]. Explosion and Shock Waves, 2004, 24(6):493-498. doi: 10.3321/j.issn:1001-1455.2004.06.003
    [9] 戴俊, 钱七虎.高地应力条件下的巷道崩落爆破参数[J].爆炸与冲击, 2007, 27(3):272-276. doi: 10.3321/j.issn:1001-1455.2007.03.014

    Dai Jun, Qian Qihu. Break blasting parameters for driving a roadway in rock with high residual stress[J]. Explosion and Shock Waves, 2007, 27(3):272-276. doi: 10.3321/j.issn:1001-1455.2007.03.014
    [10] 谢瑞峰, 曲国鹏, 雎文静.深部岩石掘进爆破压碎圈与裂隙圈研究[J].煤矿开采, 2014, 19(3):20-22. http://d.old.wanfangdata.com.cn/Periodical/mkkc201403008

    Xie Ruifeng, Qu Guopeng, Sui Wenjing. Blasting crushing circle and fracture circle of driving roadway in deep rock[J]. Coal Mining Technology, 2014, 19(3):20-22. http://d.old.wanfangdata.com.cn/Periodical/mkkc201403008
    [11] 付玉华, 李夕兵, 董陇军.损伤条件下深部岩体巷道光面爆破参数研究[J].岩土力学, 2010, 31(5):1420-1426. doi: 10.3969/j.issn.1000-7598.2010.05.012

    Fu Yuhua, Li Xibing, Dong Longjun. Analysis of smooth blasting parameters for tunnels in deep damaged rock mass[J]. Rock and Soil Mechanics, 2010, 31(5):1420-1426. doi: 10.3969/j.issn.1000-7598.2010.05.012
    [12] 杨立云, 杨仁树, 许鹏, 等.初始压应力场对爆生裂纹行为演化效应的实验研究[J].煤炭学报, 2013, 38(3):404-410. http://d.old.wanfangdata.com.cn/Periodical/mtxb201303009

    Yang Liyun, Yang Renshu, Xu Peng, et al. Experimental study on the effect of initial compression stress field to blast-induced crack behaviors[J]. Journal of China Coal Society, 2013, 38(3):404-410. http://d.old.wanfangdata.com.cn/Periodical/mtxb201303009
    [13] Yang Liyun, Yang Renshu, Qu Guanglong, et al. Caustic study on blast-induced wing crack behaviors in dynamic-static superimposed stress field[J]. International Journal of Mining Science & Technology, 2014, 24(4):417-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb-e201404001
    [14] 徐颖, 袁璞.爆炸荷载下深部围岩分区破裂模型试验研究[J].岩石力学与工程学报, 2015, 34(Suppl 2):3844-3851. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2015S2027.htm

    Xu Ying, Yuan Pu. Model test of zonal disintegration in deep rock under blasting load[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 2):3844-3851. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2015S2027.htm
    [15] 杨立云, 杨仁树, 许鹏.新型数字激光动态焦散线实验系统及其应用[J].中国矿业大学学报, 2013, 42(2):188-194. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201302005

    Yang Liyun, Yang Renshu, Xu Peng. Caustics method combined with laser & digital high-speed camera and its applications[J]. Journal of China University of Mining & Technology, 2013, 42(2):188-194. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201302005
    [16] 杨仁树, 杨立云, 岳中文, 等. 数字激光动态焦散线实验方法和系统: 中国, 201110366309. 9[P]. 2013-09-04.
    [17] 杨立云, 杨仁树, 许鹏, 等. 一种用于模拟深部岩石爆破致裂的光测力学实验装置: 中国, 201110366318. 8[P]. 2014-07-09.
  • 期刊类型引用(7)

    1. 雷成,李福胜,缪得祥,朱涛. 基于回归分析法的矩形槽圆管吸能特性研究. 机械强度. 2024(02): 292-300 . 百度学术
    2. 王春华,杨雨泽,安达,唐治. 液压支架凹角圆管式薄壁构件吸能特性分析与优化. 机械设计与制造. 2024(10): 266-271+276 . 百度学术
    3. 邓敏杰,刘志芳. 仿马尾草薄壁结构的设计与耐撞性研究. 高压物理学报. 2022(03): 111-120 . 百度学术
    4. 张欣玥,惠旭龙,葛宇静,舒挽,白春玉,刘小川. 中低速压缩加载下不同截面构型复合材料薄壁结构吸能特性及失效分析. 爆炸与冲击. 2022(06): 36-49 . 本站查看
    5. 霍鹏,许述财,范晓文,李建平,杨欣,黄晗. 鹿角骨单位仿生薄壁管斜向冲击耐撞性研究. 爆炸与冲击. 2020(11): 127-138 . 本站查看
    6. 谭丽辉,谭洪武,鲁帅. 诱导缺陷结构在薄壁构件耐撞性中的应用. 河南科技. 2016(21): 74-75 . 百度学术
    7. 李玉如,柳忠彬,肖守讷,王欢. 预制螺旋槽薄壁管的吸能研究. 四川理工学院学报(自然科学版). 2015(02): 21-25 . 百度学术

    其他类型引用(16)

  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  4431
  • HTML全文浏览量:  1416
  • PDF下载量:  416
  • 被引次数: 23
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2015-12-26
  • 刊出日期:  2017-03-25

目录

/

返回文章
返回