气相爆轰波传播过程中的自点火效应

张薇 刘云峰 滕宏辉 姜宗林

张薇, 刘云峰, 滕宏辉, 姜宗林. 气相爆轰波传播过程中的自点火效应[J]. 爆炸与冲击, 2017, 37(2): 274-282. doi: 10.11883/1001-1455(2017)02-0274-09
引用本文: 张薇, 刘云峰, 滕宏辉, 姜宗林. 气相爆轰波传播过程中的自点火效应[J]. 爆炸与冲击, 2017, 37(2): 274-282. doi: 10.11883/1001-1455(2017)02-0274-09
Zhang Wei, Liu Yunfeng, Teng Honghui, Jiang Zonglin. Auto-ignition effect in gaseous detonation propagation[J]. Explosion And Shock Waves, 2017, 37(2): 274-282. doi: 10.11883/1001-1455(2017)02-0274-09
Citation: Zhang Wei, Liu Yunfeng, Teng Honghui, Jiang Zonglin. Auto-ignition effect in gaseous detonation propagation[J]. Explosion And Shock Waves, 2017, 37(2): 274-282. doi: 10.11883/1001-1455(2017)02-0274-09

气相爆轰波传播过程中的自点火效应

doi: 10.11883/1001-1455(2017)02-0274-09
基金项目: 

国家自然科学基金项目 11532014

详细信息
    作者简介:

    张薇(1988-),女,博士研究生

    通讯作者:

    刘云峰,liuyunfeng@imech.ac.cn

  • 中图分类号: O381

Auto-ignition effect in gaseous detonation propagation

  • 摘要: 基于基元反应模型和单步反应模型,对直管道中H2-air混合气体中爆轰波的传播过程进行了数值模拟,揭示了气相爆轰波传播过程中的自点火效应。利用数值模拟方法计算了不同爆轰模型的点火延迟时间,并得到了爆轰波三波点的传播过程以及所形成胞格结构的尺寸。结果表明,胞格宽度与点火延迟时间成正比;爆轰波诱导区内气体的点火延迟时间与三波点的运动周期基本一致。进一步对结果分析可知,爆轰波的自维持传播取决于点火延迟时间(表征化学反应的特征时间)和三波点的运动周期(表征流动的特征时间)的匹配;当二者相匹配时,经过前导激波压缩后形成的高温高压爆轰气体,在短时间内实现了自点火,同时释放出大量的能量推动了爆轰波的前进,即爆轰波的稳定自维持传播依靠其自点火机制。
  • 图  1  计算模型示意图

    Figure  1.  Schematic illustration of the problem considered

    图  2  模型和实验预测的点火延迟时间对比

    Figure  2.  Comparison of ignition delay times predicted by two models and the experimental data

    图  3  不同压力下model-1和model-2的点火延迟时间

    Figure  3.  Comparison of ignition delay times predicted by model-1 and model-2 at different pressures

    图  4  不同化学反应模型预测的点火延迟时间

    Figure  4.  Comparison of ignition delay times predicted by different chemical reaction models

    图  5  采用model-1数值模拟二维爆轰波传播,流场的压力等值线

    Figure  5.  Instantaneous contours of pressure for a two-dimensional detonation propagation simulated by model-1

    图  6  采用model-1数值模拟的一对三波点的压力等值线分布

    Figure  6.  Movement of triple-wave points shown with the pressure contour maps in the numerical simulation by model-1

    图  7  采用model-2数值模拟二维爆轰波传播,流场的压力等值线

    Figure  7.  Instantaneous contours of pressure for a two-dimensional detonation propagation simulated by model-2

    图  8  采用model-2数值模拟的一对三波点运动的胞格结构

    Figure  8.  Movement of triple-wave points shown with the cellular structure simulated by model-2

    图  9  采用model-1数值模拟二维H2-air爆轰波的胞格结构

    Figure  9.  Cellular structures for a two-dimensional H2-air detonation simulated by model-1

    图  10  采用model-2数值模拟二维H2-air爆轰波的胞格结构

    Figure  10.  Cellular structures for a two-dimensional H2-air detonation simulated by model-2

    表  1  单步反应模型的参数取值

    Table  1.   Parameters of one-step reaction model

    ZU ZB γU γB RU/(J·kg-1·K-1) RB/(J·kg-1·K-1) Ea/(J·kg-1) K/s-1 q/(J·kg-1)
    1.0 0 1.40 1.24 398.5 368.9 4.794×106 7.5×106 3.5×106
    下载: 导出CSV
  • [1] Lee J H S. The detonation phenomenon[M]. Cambridge University Press, 2008.
    [2] 滕宏辉, 吕俊明, 姜宗林.可燃气体中激波与障碍物作用在下游形成爆轰波的数值研究[J].爆炸与冲击, 2007, 27(3):251-258. doi: 10.3321/j.issn:1001-1455.2007.03.011

    Teng Honghui, Lü Junming, Jiang Zonglin, et al. Downstream detonation initiation induced by interaction between shock wave and obstacle in combustible gas mixtures[J]. Explosion and Shock Waves, 2007, 27(3):251-258. doi: 10.3321/j.issn:1001-1455.2007.03.011
    [3] 滕宏辉.气相爆轰波形成和传播机制的基础问题研究[D].北京: 中国科学院力学研究所, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1624395
    [4] 王昌建, 徐胜利.直管内胞格爆轰的基元反应数值研究[J].爆炸与冲击, 2005, 25(5):405-416. doi: 10.3321/j.issn:1001-1455.2005.05.004

    Wang Changjian, Xu Shengli. Numerical study on cellular detonation in a straight tube based on detailed chemical reaction model[J]. Explosion and Shock Waves, 2005, 25(5):405-416. doi: 10.3321/j.issn:1001-1455.2005.05.004
    [5] 滕宏辉, 张德良, 李辉煌, 等.用环形激波聚焦实现爆轰波直接起爆的数值模拟[J].爆炸与冲击, 2005, 25(6):512-518. doi: 10.3321/j.issn:1001-1455.2005.06.006

    Teng Honghui, Zhang Deliang, Li Huihuang, et al. Numerical investigation of detonation direct initiation induced by toroidal shock wave focusing[J]. Explosion and Shock Waves, 2005, 25(6):512-518. doi: 10.3321/j.issn:1001-1455.2005.06.006
    [6] Gamezo V N, Desbordes D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves[J]. Shock Waves, 1999, 9(1):11-17. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026115572/
    [7] Sharpe G J. Transverse waves in numerical simulations of cellular detonations[J]. Journal of Fluid Mechanics, 2001, 447:31-52. doi: 10.1017/S0022112001005535
    [8] Choi J Y, Ma F H, Yang V. Some numerical issues on simulation of detonation cell structures[J]. Combustion, Explosion, and Shock Waves, 2008, 44(5):560-578. doi: 10.1007/s10573-008-0086-x
    [9] Oran E S, Jones D A, Sichel M. Numerical simulations of detonation transmission[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1992, 436(1897):267-297. doi: 10.1098/rspa.1992.0018
    [10] 姜宗林, 滕宏辉.气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究[J].中国科学, 2012, 42(4):421-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200276792

    Jiang Zonglin, Teng Honghui. Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation[J]. Scientia Sinica, 2012, 42(4):421-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200276792
    [11] Lee J H S. Dynamic parameters of gaseous detonations[J]. Annual Review of Fluid Mechanics, 1984, 16(1):311-336. doi: 10.1146/annurev.fl.16.010184.001523
    [12] 张薇, 刘云峰, 姜宗林.气相爆轰波胞格尺度与点火延迟时间关系研究[J].力学学报, 2014, 46(6):977-981. http://www.cqvip.com/QK/91029X/201406/76888866504849524854484956.html

    Zhang Wei, Liu Yunfeng, Jiang Zonglin. Study on the relationship between ignition delay time and gaseous detonation cell size[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6):977-981. http://www.cqvip.com/QK/91029X/201406/76888866504849524854484956.html
    [13] Stankovic I, Merci B. Analysis of auto-ignition of heated hydrogen-air mixtures with different detailed reaction mechanisms[J]. Combustion Theory and Modelling, 2011, 15(3):409-436. doi: 10.1080/13647830.2010.542830
    [14] 刘云峰, 姜宗林.详细化学反应模型中温度修正项特性研究[J].中国科学, 2011, 41(11):1296-1306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103049202

    Liu Yunfeng, Jiang Zonglin. Study on the chemical reaction kinetics of detonation models[J]. Scientia Sinica, 2011, 41(11):1296-1306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103049202
    [15] Burke M P, Chaos M, Ju Y, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion[J]. International Journal of Chemical Kinetics, 2012, 44(7):444-474. doi: 10.1002/kin.v44.7
    [16] Hayashi A K. Fundamentals of hydrogen ignition and high pressure hydrogen jet auto-ignition[R]. Belfast, Ireland: The 3rd European Summer School on Hydrogen Safety, 2008.
    [17] 赵真龙, 陈正, 陈十一.计算氢气/空气混合物着火延迟时间的相关函数[J].科学通报, 2010(11):1063-1069. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000254044

    Zhao Zhenlong, Chen Zheng, Chen Shiyi. Correlations for the ignition delay times of hydrogen/air mixture[J]. Chinese Science Bulletin, 2010(11):1063-1069. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000254044
    [18] Shepherd J E. Detonation database[DB/OL]. (2005-01-25)[2015-08-25]. http://shepherd.caltech.edu/detn_db/html/db.html
    [19] Taylor B D, Kessler D A, Gamezo V N, et al. Numerical simulations of hydrogen detonations with detailed chemical kinetics[J]. Proceedings of the Combustion Institute, 2013, 34(2):2009-2016. doi: 10.1016/j.proci.2012.05.045
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  4871
  • HTML全文浏览量:  1411
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-25
  • 修回日期:  2015-12-07
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回