Auto-ignition effect in gaseous detonation propagation
-
摘要: 基于基元反应模型和单步反应模型,对直管道中H2-air混合气体中爆轰波的传播过程进行了数值模拟,揭示了气相爆轰波传播过程中的自点火效应。利用数值模拟方法计算了不同爆轰模型的点火延迟时间,并得到了爆轰波三波点的传播过程以及所形成胞格结构的尺寸。结果表明,胞格宽度与点火延迟时间成正比;爆轰波诱导区内气体的点火延迟时间与三波点的运动周期基本一致。进一步对结果分析可知,爆轰波的自维持传播取决于点火延迟时间(表征化学反应的特征时间)和三波点的运动周期(表征流动的特征时间)的匹配;当二者相匹配时,经过前导激波压缩后形成的高温高压爆轰气体,在短时间内实现了自点火,同时释放出大量的能量推动了爆轰波的前进,即爆轰波的稳定自维持传播依靠其自点火机制。Abstract: In this paper, the auto-ignition mechanism in the gaseous detonation propagation of the stoichiometric H2-air detonable mixture in a straight tube was numerically studied using an overall one-step chemical reaction model and a detailed chemical reaction model based on the two-dimensional Euler equations. Meanwhile, the ignition delay times predicted by different models under different pressures and at different temperatures were compared and the propagation process of triple-shock points and the cell sizes were investigated. The results demonstrated that the cell sizes are proportional to the ignition delay times, and the ignition delay time in the induction zone is consistent with the average movement period of the triple-shock points. The leading shock compresses the detonable gas and then both the temperature and the pressure of the gas rise. The gas with high temperature and pressure soon finishes the process of auto-ignition, and a lot of heat is released during the ignition to maintain the detonation propagation, which means the auto-ignition mechanism ensures the self-sustained detonation propagation. The ignition delay time is considered as a chemical time scale characterizing the chemical reaction. The period of the movement of the triple-shock points is a characteristic time scale of shock dynamics. The coupling of these two time scales is a principal mechanism in gaseous detonation propagation.
-
Key words:
- cellular detonation /
- auto-ignition /
- ignition delay time /
- triple-shock points
-
表 1 单步反应模型的参数取值
Table 1. Parameters of one-step reaction model
ZU ZB γU γB RU/(J·kg-1·K-1) RB/(J·kg-1·K-1) Ea/(J·kg-1) K/s-1 q/(J·kg-1) 1.0 0 1.40 1.24 398.5 368.9 4.794×106 7.5×106 3.5×106 -
[1] Lee J H S. The detonation phenomenon[M]. Cambridge University Press, 2008. [2] 滕宏辉, 吕俊明, 姜宗林.可燃气体中激波与障碍物作用在下游形成爆轰波的数值研究[J].爆炸与冲击, 2007, 27(3):251-258. doi: 10.3321/j.issn:1001-1455.2007.03.011Teng Honghui, Lü Junming, Jiang Zonglin, et al. Downstream detonation initiation induced by interaction between shock wave and obstacle in combustible gas mixtures[J]. Explosion and Shock Waves, 2007, 27(3):251-258. doi: 10.3321/j.issn:1001-1455.2007.03.011 [3] 滕宏辉.气相爆轰波形成和传播机制的基础问题研究[D].北京: 中国科学院力学研究所, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1624395 [4] 王昌建, 徐胜利.直管内胞格爆轰的基元反应数值研究[J].爆炸与冲击, 2005, 25(5):405-416. doi: 10.3321/j.issn:1001-1455.2005.05.004Wang Changjian, Xu Shengli. Numerical study on cellular detonation in a straight tube based on detailed chemical reaction model[J]. Explosion and Shock Waves, 2005, 25(5):405-416. doi: 10.3321/j.issn:1001-1455.2005.05.004 [5] 滕宏辉, 张德良, 李辉煌, 等.用环形激波聚焦实现爆轰波直接起爆的数值模拟[J].爆炸与冲击, 2005, 25(6):512-518. doi: 10.3321/j.issn:1001-1455.2005.06.006Teng Honghui, Zhang Deliang, Li Huihuang, et al. Numerical investigation of detonation direct initiation induced by toroidal shock wave focusing[J]. Explosion and Shock Waves, 2005, 25(6):512-518. doi: 10.3321/j.issn:1001-1455.2005.06.006 [6] Gamezo V N, Desbordes D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves[J]. Shock Waves, 1999, 9(1):11-17. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026115572/ [7] Sharpe G J. Transverse waves in numerical simulations of cellular detonations[J]. Journal of Fluid Mechanics, 2001, 447:31-52. doi: 10.1017/S0022112001005535 [8] Choi J Y, Ma F H, Yang V. Some numerical issues on simulation of detonation cell structures[J]. Combustion, Explosion, and Shock Waves, 2008, 44(5):560-578. doi: 10.1007/s10573-008-0086-x [9] Oran E S, Jones D A, Sichel M. Numerical simulations of detonation transmission[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1992, 436(1897):267-297. doi: 10.1098/rspa.1992.0018 [10] 姜宗林, 滕宏辉.气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究[J].中国科学, 2012, 42(4):421-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200276792Jiang Zonglin, Teng Honghui. Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation[J]. Scientia Sinica, 2012, 42(4):421-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200276792 [11] Lee J H S. Dynamic parameters of gaseous detonations[J]. Annual Review of Fluid Mechanics, 1984, 16(1):311-336. doi: 10.1146/annurev.fl.16.010184.001523 [12] 张薇, 刘云峰, 姜宗林.气相爆轰波胞格尺度与点火延迟时间关系研究[J].力学学报, 2014, 46(6):977-981. http://www.cqvip.com/QK/91029X/201406/76888866504849524854484956.htmlZhang Wei, Liu Yunfeng, Jiang Zonglin. Study on the relationship between ignition delay time and gaseous detonation cell size[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6):977-981. http://www.cqvip.com/QK/91029X/201406/76888866504849524854484956.html [13] Stankovic I, Merci B. Analysis of auto-ignition of heated hydrogen-air mixtures with different detailed reaction mechanisms[J]. Combustion Theory and Modelling, 2011, 15(3):409-436. doi: 10.1080/13647830.2010.542830 [14] 刘云峰, 姜宗林.详细化学反应模型中温度修正项特性研究[J].中国科学, 2011, 41(11):1296-1306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103049202Liu Yunfeng, Jiang Zonglin. Study on the chemical reaction kinetics of detonation models[J]. Scientia Sinica, 2011, 41(11):1296-1306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103049202 [15] Burke M P, Chaos M, Ju Y, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion[J]. International Journal of Chemical Kinetics, 2012, 44(7):444-474. doi: 10.1002/kin.v44.7 [16] Hayashi A K. Fundamentals of hydrogen ignition and high pressure hydrogen jet auto-ignition[R]. Belfast, Ireland: The 3rd European Summer School on Hydrogen Safety, 2008. [17] 赵真龙, 陈正, 陈十一.计算氢气/空气混合物着火延迟时间的相关函数[J].科学通报, 2010(11):1063-1069. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000254044Zhao Zhenlong, Chen Zheng, Chen Shiyi. Correlations for the ignition delay times of hydrogen/air mixture[J]. Chinese Science Bulletin, 2010(11):1063-1069. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000254044 [18] Shepherd J E. Detonation database[DB/OL]. (2005-01-25)[2015-08-25]. http://shepherd.caltech.edu/detn_db/html/db.html [19] Taylor B D, Kessler D A, Gamezo V N, et al. Numerical simulations of hydrogen detonations with detailed chemical kinetics[J]. Proceedings of the Combustion Institute, 2013, 34(2):2009-2016. doi: 10.1016/j.proci.2012.05.045