• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

短切碳纤维C/SiC陶瓷基复合材料的动态劈裂拉伸实验

徐颖 邵彬彬 许维伟 杨建明

张越举, 杨旭升, 李晓杰, 王勇, 姚政, 肖辉, 赵恩军. 钛/钢复合板爆炸焊接实验[J]. 爆炸与冲击, 2012, 32(1): 103-107. doi: 10.11883/1001-1455(2012)01-0103-05
引用本文: 徐颖, 邵彬彬, 许维伟, 杨建明. 短切碳纤维C/SiC陶瓷基复合材料的动态劈裂拉伸实验[J]. 爆炸与冲击, 2017, 37(2): 315-322. doi: 10.11883/1001-1455(2017)02-0315-08
ZHANG Yue-ju, YANG Xu-sheng, LI Xiao-jie, WANG Yong, YAO Zheng, XIAO Hui, ZHAO En-jun. Anexperimentalresearchonexplosiveweldingoftitanium/steelcladplate[J]. Explosion And Shock Waves, 2012, 32(1): 103-107. doi: 10.11883/1001-1455(2012)01-0103-05
Citation: Xu Ying, Shao Binbin, Xu Weiwei, Yang Jianming. Dynamic splitting tensile test of short carbon fiber C/SiC ceramic matrix composites[J]. Explosion And Shock Waves, 2017, 37(2): 315-322. doi: 10.11883/1001-1455(2017)02-0315-08

短切碳纤维C/SiC陶瓷基复合材料的动态劈裂拉伸实验

doi: 10.11883/1001-1455(2017)02-0315-08
基金项目: 

国家自然科学基金项目 51374012

高等学校博士学科点专项科研基金项目 20123415110001

详细信息
    作者简介:

    徐颖(1965—), 男, 博士, 教授, 博士生导师

    通讯作者:

    邵彬彬, shao_aust@163.com

  • 中图分类号: O347.3

Dynamic splitting tensile test of short carbon fiber C/SiC ceramic matrix composites

  • 摘要: 为了探究C/SiC陶瓷基复合材料的动态断裂力学行为和破坏形态,利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)装置对3种不同短切碳纤维体积分数的C/SiC陶瓷基复合材料进行了动态劈裂实验,并利用扫描电子显微镜扫描了C/SiC复合材料试件的破坏界面,分析了C/SiC陶瓷基复合材料的失效特征和增韧机理。实验结果表明:C/SiC复合材料在冲击劈裂实验过程中,同一短切碳纤维体积分数下试件的动态抗拉强度随着冲击气压的增大而增大; 短切碳纤维体积分数为16.0%时, 材料的抗拉强度最低; 冲击后,试件的整体破坏情况与冲击气压、短切碳纤维体积分数有关。
  • 图  1  巴西圆盘对径压缩

    Figure  1.  Diametrical compression on the Brazilian disc

    图  2  动态劈裂实验试件安装方式

    Figure  2.  Specimen installation mode in dynamic splitting tests

    图  3  SHPB劈裂拉伸实验应力波形

    Figure  3.  Stress waves in SHPB tensile test

    图  4  试件的动态应力平衡检验

    Figure  4.  Dynamic stress equilibrium test of specimen

    图  5  短切碳纤维体积分数为24.8%的C/SiC复合材料试件动态劈裂破碎形态

    Figure  5.  Dynamic Splitting crushing forms of C/SiC composite specimens with the short cut carbon fiber volume fraction of 24.8%

    图  6  不同短切碳纤维体积分数下典型应力时程曲线

    Figure  6.  Typical stress-time curves at different short cut carbon fiber volume fractions

    图  7  动态拉伸强度与冲击气压的关系

    Figure  7.  Dynamic tensile strength varying with impact pressure

    图  8  不同气压强度下典型应力时程曲线

    Figure  8.  Typical stress-time curves at different impact pressures

    图  9  动态拉伸强度与短切碳纤维体积分数的关系

    Figure  9.  Dynamic tensile strength varying with short cut carbon fiber volume fraction

    图  10  短切碳纤维体积分数为16.0%的C/SiC复合材料断口形貌

    Figure  10.  Fracture surface of C/SiC composites with the short cut carbon fiber volume content of 16.0%

    图  11  短切碳纤维体积分数为21.0%的C/SiC复合材料断口形貌

    Figure  11.  Fracture surface of C/SiC composites with the short cut carbon fiber volume content of 21.0%

    图  12  短切碳纤维体积分数为24.8%的C/SiC复合材料断口形貌

    Figure  12.  Fracture surface of C/SiC composites with the short cut carbon fiber volume content of 24.8%

    图  13  不同冲击气压下, 短切碳纤维体积分数为24.8%的C/SiC复合材料断口形貌

    Figure  13.  Fracture surface of C/SiC composites with the short cut carbon fiber volume content of 24.8% at different impact pressures

    图  14  面积比与拉伸强度的关系

    Figure  14.  Area ratio and dynamic tensile strength

  • [1] 张立同, 成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    Zhang Litong, Cheng Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001
    [2] Aveston J. Properties of fiber composite[C]//National Physical Laboratory Conference Proceeding. Guiodford, England: IPC Science and Technology Press, 1971: 63.
    [3] 彭刚, 冯家臣, 胡时胜, 等.纤维增强复合材料高应变率拉伸实验技术研究[J].实验力学, 2004, 19(2):136-143. doi: 10.3969/j.issn.1001-4888.2004.02.002

    Peng Gang, Feng Jiachen, Hu Shisheng, et al. A study on high strain rate tensile experiment technique aimed at fiber reinforced composite[J]. Journal of Experimental Mechanics, 2004, 19(2):136-143. doi: 10.3969/j.issn.1001-4888.2004.02.002
    [4] 潘文革, 矫桂琼, 管国阳.二维机织碳纤维/碳化硅陶瓷基复合材料损伤分析[J].硅酸盐学报, 2005, 33(11):23-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsyxb200511004

    Pang Wen'ge, Jiao Guiqiong, Guan Guoyang. Damage analysis of plain weave carbon fiber/silicon carbide ceramic matrix composites[J]. Journal of The Chinese Ceramic Society, 2005, 33(11):23-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsyxb200511004
    [5] 梅辉, 成来飞, 张立同, 等.2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征[J].硅酸盐学报, 2007, 35(2):137-143. doi: 10.3321/j.issn:0454-5648.2007.02.002

    Mei Hui, Cheng Laifei, Zhang Litong, et al. Damage evolution and micro structural characterization of a cross-woven C/SiC composite under tensile loading[J]. Journal of The Chinese Ceramic Society, 2007, 35(2):137-143. doi: 10.3321/j.issn:0454-5648.2007.02.002
    [6] 杨成鹏, 矫桂琼, 王波.2D-C/SiC复合材料的单轴拉伸力学行为及其强度[J].力学学报, 2011, 43(2):330-337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000629747

    Yang Chengpeng, Jiao Guiqiong, Wang Bo. Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2):330-337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000629747
    [7] 索涛, 戴磊, 石春森, 等.碳纤维增韧的陶瓷基复合材料在高温高应变率下的压缩力学行为[J].爆炸与冲击, 2012, 32(3):297-302. doi: 10.3969/j.issn.1001-1455.2012.03.012

    Suo Tao, Dai Lei, Shi Chunsen, et al. Mechanical behaviors of C/SiC composites subjected to uniaxial compression at high temperatures and high strain rates[J]. Explosion and Shock Waves, 2012, 32(3):297-302. doi: 10.3969/j.issn.1001-1455.2012.03.012
    [8] 邵彬彬, 徐颖, 许维伟, 等.C/SiC复合材料的动态力学性能及微观结构分析[J].材料科学与工程学报, 2016, 34(4):603-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc201604019

    Shao Binbin, Xu Ying, Xu Weiwei, et al. Dynamic mechanical properties and microstructure of C/SiC composites[J]. Journal of Materials Science and Engineering, 2016, 34(4):603-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc201604019
    [9] 罗征, 周新贵, 余金山, 等.以新型先驱体浸渍裂解制备SiC/SiC复合材料弯曲性能研究[J].稀有金属材料与工程, 2013, 42(Suppl 1):377-379. http://www.cnki.com.cn/Article/CJFDTotal-COSE2013S1102.htm

    Luo Zheng, Zhou Xingui, Yu Jinshan, et al. Fabrication of SiC/SiC composites by improved PIP processing with a new precursor polymers[J]. Rare Metal Materials and Engineering, 2013, 42(Suppl 1):377-379. http://www.cnki.com.cn/Article/CJFDTotal-COSE2013S1102.htm
    [10] 胡俊, 巫绪涛, 聚苯乙烯混凝土动态劈裂实验[J].爆炸与冲击, 2011, 31(4):402-406. http://www.bzycj.cn/CN/abstract/abstract8691.shtml

    Hu Jun, Wu Xutao. Dynamic splitting test of expanded polystyrene (EPS) concrete[J]. Explosion and Shock Waves, 2011, 31(4):402-406. http://www.bzycj.cn/CN/abstract/abstract8691.shtml
    [11] 吕晓聪, 许金余, 赵德辉, 等.冲击荷载循环作用下砂岩动态力学性能的围压效应研究[J].工程力学, 2011, 28(1):138-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100006342

    Lü Xiaocong, Xu Jinyu, Zhao Dehui, et al. Research on confining pressure effect of sandstone dynamic mechanical performance under the cyclical impact loadings[J]. Engineering Mechanics, 2011, 28(1):138-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100006342
    [12] 陶俊林.SHPB实验中几个问题的讨论[J].西南科技大学学报, 2009, 24(3):27-35. doi: 10.3969/j.issn.1671-8755.2009.03.006

    Tao Junlin. Some questions need to discuss in the SHPB experiment[J]. Journal of Southwest University of Science and Technology, 2009, 24(3):27-35. doi: 10.3969/j.issn.1671-8755.2009.03.006
    [13] 宫凤强, 李夕兵, Zhao J.巴西圆盘劈裂试验中拉伸模量的解析算法[J].岩石力学与工程学报, 2010, 29(5):881-891. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201005003

    Gong Fengqiang, Li Xibing, Zhao J. Analytical algorithm to estimate tensile modulus in Brazilian disk splitting tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5):881-891. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201005003
    [14] 邓湘云, 王晓慧, 李龙土.扫描电子显微镜在新型陶瓷材料显微分析中的应用[J].硅酸盐通报, 2007, 26(1):194-198. doi: 10.3969/j.issn.1001-1625.2007.01.043

    Deng Xiangyun, Wang Xiaohui, Li Longtu. Applications of scanning electronic microscope in microanalysis of new style ceramic material[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(1):194-198. doi: 10.3969/j.issn.1001-1625.2007.01.043
  • 期刊类型引用(8)

    1. 李仲玉, 高阳, 袁绍阳, 王彦翔, 王兵. 基于深度学习的CFRP蜂窝铝三明治结构冲击能量预测研究. 西南大学学报(自然科学版). 2025(08) 百度学术
    2. 叶义晨, 文鹤鸣. 剪切增稠液浸渍凯夫拉织物的动态本构模型. 高压物理学报. 2025(07) 百度学术
    3. 杨可谞,何成龙,霍子怡,毛翔. UHMWPE背板厚度对铝复合板抗侵彻增强效应分析. 爆炸与冲击. 2024(02): 72-87 . 本站查看
    4. 姚昱,方海,祝露,朱俊羽. 纤维增强复合材料缠绕管桩弯曲冲击吸能试验与模拟. 振动与冲击. 2024(13): 299-305 . 百度学术
    5. 李峰,陈姝予,张荣荣,周思齐. 碳纳米纤维增强模拟月壤地聚合物抗冲击性能研究. 华中科技大学学报(自然科学版). 2024(08): 76-83 . 百度学术
    6. 崔旭,王祖昊. CFRP层合板力学性能数值模拟的研究进展. 航空制造技术. 2023(15): 60-70 . 百度学术
    7. 王金贵,胡超,罗飞云,张苏. 泄爆面积对甲烷-空气预混泄爆容器结构响应影响的实验研究. 爆炸与冲击. 2022(04): 139-150 . 本站查看
    8. 薛程,李彦斌,杭晓晨,郑浩,王天怡,费庆国. 复合材料机翼热气弹剪裁研究及分析系统研发. 东南大学学报(自然科学版). 2022(05): 899-906 . 百度学术

    其他类型引用(5)

  • 加载中
图(14)
计量
  • 文章访问数:  5107
  • HTML全文浏览量:  1591
  • PDF下载量:  300
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-09-30
  • 修回日期:  2016-03-07
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回